TPTP Problem File: SEV135^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV135^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem THM151
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0156 [Bro09]
%          : THM151 [TPS]

% Status   : Theorem
% Rating   : 0.00 v6.2.0, 0.17 v6.1.0, 0.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   17 (   0 equality;  17 variable)
%            Maximal formula depth :   14 (   8 average)
%            Number of connectives :   16 (   0   ~;   0   |;   2   &;  10   @)
%                                         (   0 <=>;   4  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    3 (   3   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :    7 (   0 sgn;   7   !;   0   ?;   0   ^)
%                                         (   7   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,(
    a: $tType )).

thf(cTHM151_pme,conjecture,(
    ! [Xr: a > a > $o,Xx: a,Xy: a] :
      ( ( Xr @ Xx @ Xy )
     => ! [Xq: a > $o] :
          ( ( ! [Xw: a] :
                ( ( Xr @ Xx @ Xw )
               => ( Xq @ Xw ) )
            & ! [Xu: a,Xv: a] :
                ( ( ( Xq @ Xu )
                  & ( Xr @ Xu @ Xv ) )
               => ( Xq @ Xv ) ) )
         => ( Xq @ Xy ) ) ) )).

%------------------------------------------------------------------------------