TPTP Problem File: SEV132^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV132^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from TC-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0987 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   28 (   1 equality;  27 variable)
%            Maximal formula depth :   15 (   8 average)
%            Number of connectives :   26 (   1   ~;   0   |;   4   &;  14   @)
%                                         (   0 <=>;   7  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    4 (   4   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   10 (   0 sgn;   9   !;   1   ?;   0   ^)
%                                         (  10   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,(
    a: $tType )).

thf(cTC_INTERP_BBP_OLD_pme,conjecture,(
    ! [Xr: a > a > $o,Xs: a,Xt: a] :
      ( ( ( Xs != Xt )
        & ! [Xx: a > $o] :
            ( ! [Xy: a,Xz: a] :
                ( ( ( Xr @ Xy @ Xz )
                  & ( Xx @ Xy ) )
               => ( Xx @ Xz ) )
           => ( ( Xx @ Xs )
             => ( Xx @ Xt ) ) ) )
     => ? [Xc: a] :
          ( ( Xr @ Xs @ Xc )
          & ! [Xx: a > $o] :
              ( ! [Xy: a,Xz: a] :
                  ( ( ( Xr @ Xy @ Xz )
                    & ( Xx @ Xy ) )
                 => ( Xx @ Xz ) )
             => ( ( Xx @ Xc )
               => ( Xx @ Xt ) ) ) ) ) )).

%------------------------------------------------------------------------------