TPTP Problem File: SEV119^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV119^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem THM252
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0371 [Bro09]
% : THM252 [TPS]
% : THM252C [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.43 v7.4.0, 0.56 v7.3.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.40 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.60 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 42 ( 0 ~; 2 |; 4 &; 28 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 19 ( 4 ^; 15 !; 0 ?; 19 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM252_pme,conjecture,
! [PROP: ( a > a > $o ) > $o,R: a > a > $o,S: a > a > $o] :
( ( ^ [Xx: a,Xy: a] :
! [Xp: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( ( R @ Xx0 @ Xy0 )
| ( S @ Xx0 @ Xy0 ) )
=> ( Xp @ Xx0 @ Xy0 ) )
& ( PROP @ Xp ) )
=> ( Xp @ Xx @ Xy ) ) )
= ( ^ [Xx: a,Xy: a] :
! [Xp: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( ! [Xp0: a > a > $o] :
( ( ! [Xx1: a,Xy1: a] :
( ( R @ Xx1 @ Xy1 )
=> ( Xp0 @ Xx1 @ Xy1 ) )
& ( PROP @ Xp0 ) )
=> ( Xp0 @ Xx0 @ Xy0 ) )
| ! [Xp0: a > a > $o] :
( ( ! [Xx1: a,Xy1: a] :
( ( S @ Xx1 @ Xy1 )
=> ( Xp0 @ Xx1 @ Xy1 ) )
& ( PROP @ Xp0 ) )
=> ( Xp0 @ Xx0 @ Xy0 ) ) )
=> ( Xp @ Xx0 @ Xy0 ) )
& ( PROP @ Xp ) )
=> ( Xp @ Xx @ Xy ) ) ) ) ).
%------------------------------------------------------------------------------