TPTP Problem File: SEV115^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV115^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from RELN-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1193 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   89 (   1 equality;  88 variable)
%            Maximal formula depth :   17 (  10 average)
%            Number of connectives :   86 (   0   ~;   4   |;  14   &;  48   @)
%                                         (   0 <=>;  20  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   34 (  34   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   30 (   0 sgn;  28   !;   2   ?;   0   ^)
%                                         (  30   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cTHM536_pme,conjecture,
( ! [R: ( a > \$o ) > ( a > \$o ) > \$o] :
( ( ! [Xx: a > \$o,Xy: a > \$o,Xz: a > \$o] :
( ( ( R @ Xx @ Xy )
& ( R @ Xy @ Xz ) )
=> ( R @ Xx @ Xz ) )
& ! [Xx: a > \$o] :
( R @ Xx @ Xx )
& ! [Xx: a > \$o,Xy: a > \$o] :
( ( ( R @ Xx @ Xy )
& ( R @ Xy @ Xx ) )
=> ( Xx = Xy ) ) )
=> ? [S: ( a > \$o ) > \$o] :
( ! [Xx: a > \$o,Xy: a > \$o] :
( ( ( S @ Xx )
& ( S @ Xy ) )
=> ( ( R @ Xx @ Xy )
| ( R @ Xy @ Xx ) ) )
& ! [Xy: ( a > \$o ) > \$o] :
( ( ! [Xx: a > \$o,Xy0: a > \$o] :
( ( ( Xy @ Xx )
& ( Xy @ Xy0 ) )
=> ( ( R @ Xx @ Xy0 )
| ( R @ Xy0 @ Xx ) ) )
& ! [Xx: a > \$o] :
( ( S @ Xx )
=> ( Xy @ Xx ) ) )
=> ! [Xx: a > \$o] :
( ( Xy @ Xx )
=> ( S @ Xx ) ) ) ) )
=> ! [X2: ( a > \$o ) > \$o] :
? [M: ( a > \$o ) > \$o] :
( ! [Xx: a > \$o] :
( ( M @ Xx )
=> ( X2 @ Xx ) )
& ! [U: a > \$o,V: a > \$o] :
( ( ( M @ U )
& ( M @ V ) )
=> ( ! [Xx: a] :
( ( U @ Xx )
=> ( V @ Xx ) )
| ! [Xx: a] :
( ( V @ Xx )
=> ( U @ Xx ) ) ) )
& ! [Xy: ( a > \$o ) > \$o] :
( ( ! [Xx: a > \$o] :
( ( Xy @ Xx )
=> ( X2 @ Xx ) )
& ! [U: a > \$o,V: a > \$o] :
( ( ( Xy @ U )
& ( Xy @ V ) )
=> ( ! [Xx: a] :
( ( U @ Xx )
=> ( V @ Xx ) )
| ! [Xx: a] :
( ( V @ Xx )
=> ( U @ Xx ) ) ) )
& ! [Xx: a > \$o] :
( ( M @ Xx )
=> ( Xy @ Xx ) ) )
=> ! [Xx: a > \$o] :
( ( Xy @ Xx )
=> ( M @ Xx ) ) ) ) )).

%------------------------------------------------------------------------------
```