TPTP Problem File: SEV113^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV113^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from RELN-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1169 [Bro09]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.75 v8.2.0, 0.73 v8.1.0, 0.75 v7.4.0, 0.67 v7.3.0, 0.70 v7.2.0, 0.75 v7.1.0, 0.71 v7.0.0, 0.62 v6.4.0, 0.71 v6.3.0, 0.67 v6.2.0, 0.83 v6.0.0, 0.67 v5.5.0, 0.60 v5.4.0, 0.75 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 70 ( 0 ~; 0 |; 5 &; 49 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 19 ( 19 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 30 ( 0 ^; 28 !; 2 ?; 30 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM576_LFP_pme,conjecture,
( ! [K: ( a > a > $o ) > a > a > $o] :
( ! [Xr1: a > a > $o,Xr2: a > a > $o] :
( ! [Xx: a,Xy: a] :
( ( Xr1 @ Xx @ Xy )
=> ( Xr2 @ Xx @ Xy ) )
=> ! [Xx: a,Xy: a] :
( ( K @ Xr1 @ Xx @ Xy )
=> ( K @ Xr2 @ Xx @ Xy ) ) )
=> ? [L: a > a > $o] :
( ! [Xx: a,Xy: a] :
( ( L @ Xx @ Xy )
=> ( K @ L @ Xx @ Xy ) )
& ! [Xx: a,Xy: a] :
( ( K @ L @ Xx @ Xy )
=> ( L @ Xx @ Xy ) )
& ! [T: a > a > $o] :
( ! [Xx: a,Xy: a] :
( ( K @ T @ Xx @ Xy )
=> ( T @ Xx @ Xy ) )
=> ! [Xx: a,Xy: a] :
( ( L @ Xx @ Xy )
=> ( T @ Xx @ Xy ) ) ) ) )
=> ! [Xr: a > a > $o] :
? [Xs: a > a > $o] :
( ! [Xa: a,Xb: a] :
( ( Xr @ Xa @ Xb )
=> ( Xs @ Xa @ Xb ) )
& ! [Xx: a,Xy: a] :
( ( Xs @ Xx @ Xy )
=> ( Xs @ Xy @ Xx ) )
& ! [Xt: a > a > $o] :
( ( ! [Xa: a,Xb: a] :
( ( Xr @ Xa @ Xb )
=> ( Xt @ Xa @ Xb ) )
& ! [Xx: a,Xy: a] :
( ( Xt @ Xx @ Xy )
=> ( Xt @ Xy @ Xx ) ) )
=> ! [Xa: a,Xb: a] :
( ( Xs @ Xa @ Xb )
=> ( Xt @ Xa @ Xb ) ) ) ) ) ).
%------------------------------------------------------------------------------