TPTP Problem File: SEV106^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV106^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from RELN-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1130 [Bro09]

% Status   : Theorem
% Rating   : 0.82 v7.5.0, 0.86 v7.4.0, 0.89 v7.2.0, 0.88 v7.1.0, 1.00 v6.1.0, 0.86 v5.5.0, 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   66 (   9 equality;  57 variable)
%            Maximal formula depth :   18 (  10 average)
%            Number of connectives :   47 (   0   ~;   0   |;  13   &;  24   @)
%                                         (   0 <=>;  10  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    6 (   6   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   18 (   0 sgn;  12   !;   6   ?;   0   ^)
%                                         (  18   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cEQP1_1C_pme,conjecture,(
! [Xx: a > \$o,Xy: a > \$o,Xz: a > \$o] :
( ( ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xy @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xy @ Xy0 )
=> ? [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) )
& ! [Xz0: a] :
( ( ( Xx @ Xz0 )
& ( Xy0
= ( Xs @ Xz0 ) ) )
=> ( Xz0 = Xx0 ) ) ) ) )
& ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xy @ Xx0 )
=> ( Xz @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xz @ Xy0 )
=> ? [Xx0: a] :
( ( Xy @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) )
& ! [Xz0: a] :
( ( ( Xy @ Xz0 )
& ( Xy0
= ( Xs @ Xz0 ) ) )
=> ( Xz0 = Xx0 ) ) ) ) ) )
=> ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xz @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xz @ Xy0 )
=> ? [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) )
& ! [Xz0: a] :
( ( ( Xx @ Xz0 )
& ( Xy0
= ( Xs @ Xz0 ) ) )
=> ( Xz0 = Xx0 ) ) ) ) ) ) )).

%------------------------------------------------------------------------------
```