TPTP Problem File: SEV102^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV102^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from RELN-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1099 [Bro09]
% Status : Theorem
% Rating : 0.88 v9.0.0, 0.90 v8.2.0, 1.00 v8.1.0, 0.91 v7.5.0, 1.00 v7.1.0, 0.88 v7.0.0, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 9 ( 9 equ; 0 cnn)
% Maximal formula atoms : 3 ( 9 avg)
% Number of connectives : 35 ( 0 ~; 0 |; 7 &; 21 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 12 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 24 ( 9 ^; 9 !; 6 ?; 24 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cEQP_1C_pme,conjecture,
! [Xx: a > $o,Xy: a > $o,Xz: a > $o] :
( ( ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xy @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xy @ Xy0 )
=> ? [Xy_52: a] :
( ( ^ [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_52 ) ) ) )
& ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xy @ Xx0 )
=> ( Xz @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xz @ Xy0 )
=> ? [Xy_53: a] :
( ( ^ [Xx0: a] :
( ( Xy @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_53 ) ) ) ) )
=> ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xz @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xz @ Xy0 )
=> ? [Xy_55: a] :
( ( ^ [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_55 ) ) ) ) ) ).
%------------------------------------------------------------------------------