TPTP Problem File: SEV101^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV101^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from RELN-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1089 [Bro09]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.58 v8.2.0, 0.64 v8.1.0, 0.83 v7.4.0, 0.78 v7.3.0, 0.80 v7.2.0, 0.75 v7.1.0, 0.71 v7.0.0, 0.75 v6.4.0, 0.71 v6.3.0, 0.83 v5.5.0, 0.80 v5.4.0, 0.75 v5.2.0, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 8 ( 0 equ; 0 cnn)
% Maximal formula atoms : 8 ( 8 avg)
% Number of connectives : 48 ( 5 ~; 7 |; 5 &; 30 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 15 ( 4 ^; 9 !; 2 ?; 15 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(p,type,
p: $o ).
thf(cTHM120E_pme,conjecture,
? [Xr_28: ( $i > $o ) > ( $i > $o ) > $i > $o,Xr_27: ( $i > $o ) > ( $i > $o ) > $i > $o] :
( ! [Xx: $i > $o,Xw_2: $i] :
( ( Xr_27 @ Xx @ Xx @ Xw_2 )
| ( Xr_28 @ Xx @ Xx @ Xw_2 ) )
& ! [Xx: $i > $o,Xy: $i > $o,Xz: $i > $o] :
( ( ! [Xw_2: $i] :
( ( Xr_27 @ Xx @ Xy @ Xw_2 )
| ( Xr_28 @ Xx @ Xy @ Xw_2 ) )
& ! [Xw_2: $i] :
( ( Xr_27 @ Xy @ Xz @ Xw_2 )
| ( Xr_28 @ Xy @ Xz @ Xw_2 ) ) )
=> ! [Xw_2: $i] :
( ( Xr_27 @ Xx @ Xz @ Xw_2 )
| ( Xr_28 @ Xx @ Xz @ Xw_2 ) ) )
& ~ ! [Xw_2: $i] :
( ( Xr_27
@ ^ [Xx: $i] :
( p
| ~ p )
@ ^ [Xx: $i] :
( p
& ~ p )
@ Xw_2 )
| ( Xr_28
@ ^ [Xx: $i] :
( p
| ~ p )
@ ^ [Xx: $i] :
( p
& ~ p )
@ Xw_2 ) ) ) ).
%------------------------------------------------------------------------------