TPTP Problem File: SEV045^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV045^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from PERS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1134 [Bro09]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0, 0.17 v5.4.0, 0.20 v5.2.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 21 ( 1 equ; 0 cnn)
% Maximal formula atoms : 19 ( 21 avg)
% Number of connectives : 70 ( 0 ~; 0 |; 5 &; 52 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 17 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 0 con; 1-3 aty)
% Number of variables : 18 ( 0 ^; 18 !; 0 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(g,type,
g: a > b ).
thf(f,type,
f: a > b ).
thf(cQ,type,
cQ: a > b > b > $o ).
thf(cP,type,
cP: a > a > $o ).
thf(cTHM509_pme,conjecture,
( ! [Xx: a] :
( ( cP @ Xx @ Xx )
=> ( cQ @ Xx @ ( f @ Xx ) @ ( g @ Xx ) ) )
=> ( ! [Xx: a,Xy: a] :
( ( cP @ Xx @ Xy )
=> ( cQ @ Xx @ ( f @ Xx ) @ ( f @ Xy ) ) )
=> ( ( ! [Xx: a,Xy: a] :
( ( cP @ Xx @ Xy )
=> ( cP @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( cP @ Xx @ Xy )
& ( cP @ Xy @ Xz ) )
=> ( cP @ Xx @ Xz ) ) )
=> ( ( ! [Xx: a] :
( ( cP @ Xx @ Xx )
=> ( ! [Xx0: b,Xy: b] :
( ( cQ @ Xx @ Xx0 @ Xy )
=> ( cQ @ Xx @ Xy @ Xx0 ) )
& ! [Xx0: b,Xy: b,Xz: b] :
( ( ( cQ @ Xx @ Xx0 @ Xy )
& ( cQ @ Xx @ Xy @ Xz ) )
=> ( cQ @ Xx @ Xx0 @ Xz ) ) ) )
& ! [Xx: a,Xy: a] :
( ( cP @ Xx @ Xy )
=> ( ( cQ @ Xx )
= ( cQ @ Xy ) ) ) )
=> ! [Xx: a,Xy: a] :
( ( cP @ Xx @ Xy )
=> ( cQ @ Xx @ ( f @ Xx ) @ ( g @ Xy ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------