TPTP Problem File: SEV037^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV037^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1202 [Bro09]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.20 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 3 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 103 ( 0 ~; 0 |; 9 &; 78 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 19 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 16 ( 16 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 38 ( 4 ^; 34 !; 0 ?; 38 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cTHM516_pme,conjecture,
! [Xp: a > a > $o,Xq: a > a > $o,Xr: a > b > b > $o] :
( ( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xp @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp @ Xx @ Xy )
& ( Xp @ Xy @ Xz ) )
=> ( Xp @ Xx @ Xz ) )
& ( Xp = Xq ) )
=> ( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( ! [Xx0: b,Xy0: b] :
( ( Xr @ Xx @ Xx0 @ Xy0 )
=> ( Xr @ Xx @ Xy0 @ Xx0 ) )
& ! [Xx0: b,Xy0: b,Xz: b] :
( ( ( Xr @ Xx @ Xx0 @ Xy0 )
& ( Xr @ Xx @ Xy0 @ Xz ) )
=> ( Xr @ Xx @ Xx0 @ Xz ) )
& ( ( Xr @ Xx )
= ( Xr @ Xy ) ) ) )
=> ( ! [Xx: a > b,Xy: a > b] :
( ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xr @ Xx0 @ ( Xx @ Xx0 ) @ ( Xy @ Xy0 ) ) )
=> ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xr @ Xx0 @ ( Xy @ Xx0 ) @ ( Xx @ Xy0 ) ) ) )
& ! [Xx: a > b,Xy: a > b,Xz: a > b] :
( ( ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xr @ Xx0 @ ( Xx @ Xx0 ) @ ( Xy @ Xy0 ) ) )
& ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xr @ Xx0 @ ( Xy @ Xx0 ) @ ( Xz @ Xy0 ) ) ) )
=> ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xr @ Xx0 @ ( Xx @ Xx0 ) @ ( Xz @ Xy0 ) ) ) )
& ( ( ^ [Xf: a > b,Xg: a > b] :
! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xr @ Xx @ ( Xf @ Xx ) @ ( Xg @ Xy ) ) ) )
= ( ^ [Xf: a > b,Xg: a > b] :
! [Xx: a,Xy: a] :
( ( Xq @ Xx @ Xy )
=> ( Xr @ Xx @ ( Xf @ Xx ) @ ( Xg @ Xy ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------