TPTP Problem File: SEV032^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV032^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1128 [Bro09]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.90 v8.2.0, 0.92 v8.1.0, 0.91 v7.5.0, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 3 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 55 ( 5 ~; 3 |; 16 &; 24 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 16 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 18 ( 0 ^; 10 !; 8 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM266_LEMMA_pme,conjecture,
! [T: ( a > $o ) > $o,U: ( a > $o ) > $o] :
( ( ( T != U )
& ! [Xp: a > $o] :
( ( T @ Xp )
=> ? [Xz: a] : ( Xp @ Xz ) )
& ! [Xx: a] :
? [Xp: a > $o] :
( ( T @ Xp )
& ( Xp @ Xx )
& ! [Xq: a > $o] :
( ( ( T @ Xq )
& ( Xq @ Xx ) )
=> ( Xq = Xp ) ) )
& ! [Xp: a > $o] :
( ( U @ Xp )
=> ? [Xz: a] : ( Xp @ Xz ) )
& ! [Xx: a] :
? [Xp: a > $o] :
( ( U @ Xp )
& ( Xp @ Xx )
& ! [Xq: a > $o] :
( ( ( U @ Xq )
& ( Xq @ Xx ) )
=> ( Xq = Xp ) ) ) )
=> ? [Xx: a,Xy: a] :
( ( ? [Xs: a > $o] :
( ( T @ Xs )
& ( Xs @ Xx )
& ( Xs @ Xy ) )
& ! [Xq: a > $o] :
( ( U @ Xq )
=> ( ~ ( Xq @ Xx )
| ~ ( Xq @ Xy ) ) ) )
| ( ? [Xs: a > $o] :
( ( U @ Xs )
& ( Xs @ Xx )
& ( Xs @ Xy ) )
& ! [Xq: a > $o] :
( ( T @ Xq )
=> ( ~ ( Xq @ Xx )
| ~ ( Xq @ Xy ) ) ) ) ) ) ).
%------------------------------------------------------------------------------