## TPTP Problem File: SEV022^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV022^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1071 [Bro09]

% Status   : Unknown
% Rating   : 1.00 v4.0.0
% Syntax   : Number of formulae    :    3 (   0 unit;   2 type;   0 defn)
%            Number of atoms       :   41 (   2 equality;  35 variable)
%            Maximal formula depth :   14 (   7 average)
%            Number of connectives :   36 (   0   ~;   0   |;   8   &;  21   @)
%                                         (   1 <=>;   6  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    8 (   8   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    4 (   2   :;   0   =)
%            Number of variables   :   15 (   0 sgn;  11   !;   3   ?;   1   ^)
%                                         (  15   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_UNK_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cP,type,(
cP: ( a > \$o ) > \$o )).

thf(cTHM556_pme,conjecture,
( ( ! [Xp: a > \$o] :
( ( cP @ Xp )
=> ? [Xz: a] :
( Xp @ Xz ) )
& ! [Xx: a,Xp: a > \$o,Xq: a > \$o] :
( ( ( cP @ Xp )
& ( cP @ Xq )
& ( Xp @ Xx )
& ( Xq @ Xx ) )
=> ( Xp = Xq ) ) )
=> ? [R: a > a > \$o] :
( ! [Xx: a,Xy: a] :
( ( R @ Xx @ Xy )
=> ( R @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( R @ Xx @ Xy )
& ( R @ Xy @ Xz ) )
=> ( R @ Xx @ Xz ) )
& ( ( ^ [Xs: a > \$o] :
( ? [Xz: a] :
( Xs @ Xz )
& ! [Xx: a] :
( ( Xs @ Xx )
=> ! [Xy: a] :
( ( Xs @ Xy )
<=> ( R @ Xx @ Xy ) ) ) ) )
= cP ) ) )).

%------------------------------------------------------------------------------
```