TPTP Problem File: SEV016^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV016^5 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0932 [Bro09]

% Status   : Theorem
% Rating   : 0.91 v7.5.0, 0.86 v7.4.0, 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   22 (   3 equality;  19 variable)
%            Maximal formula depth :   12 (   7 average)
%            Number of connectives :   15 (   0   ~;   0   |;   4   &;   8   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    8 (   8   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   10 (   0 sgn;   4   !;   4   ?;   2   ^)
%                                         (  10   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,(
    a: $tType )).

thf(cTHM262_NEW_pme,conjecture,(
    ! [P: ( a > $o ) > $o] :
      ( ( ! [Xp: a > $o] :
            ( ( P @ Xp )
           => ? [Xz: a] :
                ( Xp @ Xz ) )
        & ! [Xx: a] :
          ? [Xp: a > $o] :
            ( ( P @ Xp )
            & ( Xp @ Xx )
            & ! [Xq: a > $o] :
                ( ( ( P @ Xq )
                  & ( Xq @ Xx ) )
               => ( Xq = Xp ) ) ) )
     => ? [Q: a > a > $o] :
          ( ( ^ [Xs: a > $o] :
              ? [Xz: a] :
                ( Xs
                = ( ^ [Xx: a] :
                      ( Q @ Xx @ Xz ) ) ) )
          = P ) ) )).

%------------------------------------------------------------------------------