TPTP Problem File: SEV010^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV010^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem THM260
% Version : Especial.
% English : An equivalence relation defines a partition.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0512 [Bro09]
% : THM260 [TPS]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0, 0.55 v7.5.0, 0.57 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.71 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 0.86 v6.1.0, 0.71 v5.5.0, 0.83 v5.4.0, 0.60 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 51 ( 0 ~; 0 |; 10 &; 30 @)
% ( 3 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 19 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 21 ( 0 ^; 16 !; 5 ?; 21 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM260_pme,conjecture,
! [R: a > a > $o] :
( ( ! [Xx: a] : ( R @ Xx @ Xx )
& ! [Xx: a,Xy: a] :
( ( R @ Xx @ Xy )
=> ( R @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( R @ Xx @ Xy )
& ( R @ Xy @ Xz ) )
=> ( R @ Xx @ Xz ) ) )
=> ( ! [Xp: a > $o] :
( ( ? [Xz: a] : ( Xp @ Xz )
& ! [Xx: a] :
( ( Xp @ Xx )
=> ! [Xy: a] :
( ( Xp @ Xy )
<=> ( R @ Xx @ Xy ) ) ) )
=> ? [Xz: a] : ( Xp @ Xz ) )
& ! [Xx: a] :
? [Xp: a > $o] :
( ? [Xz: a] : ( Xp @ Xz )
& ! [Xx0: a] :
( ( Xp @ Xx0 )
=> ! [Xy: a] :
( ( Xp @ Xy )
<=> ( R @ Xx0 @ Xy ) ) )
& ( Xp @ Xx )
& ! [Xq: a > $o] :
( ( ? [Xz: a] : ( Xq @ Xz )
& ! [Xx0: a] :
( ( Xq @ Xx0 )
=> ! [Xy: a] :
( ( Xq @ Xy )
<=> ( R @ Xx0 @ Xy ) ) )
& ( Xq @ Xx ) )
=> ( Xq = Xp ) ) ) ) ) ).
%------------------------------------------------------------------------------