TPTP Problem File: SEU997^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU997^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem CD-LATTICE-THM
% Version : Especial.
% English : A complemented distributive lattice has unique complements.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0555 [Bro09]
% : CD-LATTICE-THM [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v6.1.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.60 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 21 ( 21 equ; 0 cnn)
% Maximal formula atoms : 21 ( 21 avg)
% Number of connectives : 96 ( 0 ~; 0 |; 18 &; 76 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 23 avg)
% Number of types : 1 ( 1 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 35 ( 0 ^; 34 !; 1 ?; 35 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cCD_LATTICE_THM_pme,conjecture,
! [JOIN: a > a > a,MEET: a > a > a,TOP: a,BOTTOM: a] :
( ( ! [Xx: a] :
( ( JOIN @ Xx @ Xx )
= Xx )
& ! [Xx: a] :
( ( MEET @ Xx @ Xx )
= Xx )
& ! [Xx: a,Xy: a,Xz: a] :
( ( JOIN @ ( JOIN @ Xx @ Xy ) @ Xz )
= ( JOIN @ Xx @ ( JOIN @ Xy @ Xz ) ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( MEET @ ( MEET @ Xx @ Xy ) @ Xz )
= ( MEET @ Xx @ ( MEET @ Xy @ Xz ) ) )
& ! [Xx: a,Xy: a] :
( ( JOIN @ Xx @ Xy )
= ( JOIN @ Xy @ Xx ) )
& ! [Xx: a,Xy: a] :
( ( MEET @ Xx @ Xy )
= ( MEET @ Xy @ Xx ) )
& ! [Xx: a,Xy: a] :
( ( JOIN @ ( MEET @ Xx @ Xy ) @ Xy )
= Xy )
& ! [Xx: a,Xy: a] :
( ( MEET @ ( JOIN @ Xx @ Xy ) @ Xy )
= Xy )
& ! [Xx: a,Xy: a,Xz: a] :
( ( MEET @ Xx @ ( JOIN @ Xy @ Xz ) )
= ( JOIN @ ( MEET @ Xx @ Xy ) @ ( MEET @ Xx @ Xz ) ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( JOIN @ Xx @ ( MEET @ Xy @ Xz ) )
= ( MEET @ ( JOIN @ Xx @ Xy ) @ ( JOIN @ Xx @ Xz ) ) )
& ! [Xx: a] :
( ( MEET @ TOP @ Xx )
= Xx )
& ! [Xx: a] :
( ( JOIN @ TOP @ Xx )
= TOP )
& ! [Xx: a] :
( ( MEET @ BOTTOM @ Xx )
= BOTTOM )
& ! [Xx: a] :
( ( JOIN @ BOTTOM @ Xx )
= Xx )
& ! [Xx: a] :
? [Xy: a] :
( ( ( JOIN @ Xx @ Xy )
= TOP )
& ( ( MEET @ Xx @ Xy )
= BOTTOM ) ) )
=> ! [Xx: a,Xy: a,Xz: a] :
( ( ( ( JOIN @ Xx @ Xy )
= TOP )
& ( ( MEET @ Xx @ Xy )
= BOTTOM )
& ( ( JOIN @ Xx @ Xz )
= TOP )
& ( ( MEET @ Xx @ Xz )
= BOTTOM ) )
=> ( Xy = Xz ) ) ) ).
%------------------------------------------------------------------------------