TPTP Problem File: SEU938^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU938^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Functions)
% Problem : TPS problem THM196
% Version : Especial.
% English : It is not true that if [k COMPOSE j] is an iterate of j, provided
% we assume extensionality and the existence of the described
% function h (which can be proved if we have distinct elements a
% and b and descriptions).
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0337 [Bro09]
% : THM196 [TPS]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.60 v8.2.0, 0.77 v8.1.0, 0.73 v7.5.0, 0.43 v7.4.0, 0.78 v7.3.0, 0.89 v7.2.0, 0.88 v7.1.0, 1.00 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.80 v5.3.0, 1.00 v5.2.0, 0.80 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 4 ( 4 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 31 ( 2 ~; 0 |; 4 &; 18 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 12 ( 3 ^; 9 !; 0 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a,type,
a: $i ).
thf(b,type,
b: $i ).
thf(h,type,
h: $i > $i ).
thf(cTHM196_pme,conjecture,
( ( ( ( h @ a )
= a )
& ( ( h @ b )
!= a )
& ! [Xf: $i > $i,Xg: $i > $i] :
( ! [Xx: $i] :
( ( Xf @ Xx )
= ( Xg @ Xx ) )
=> ( Xf = Xg ) ) )
=> ~ ! [Xj: $i > $i,Xk: $i > $i] :
( ! [Xp: ( $i > $i ) > $o] :
( ( ( Xp @ Xj )
& ! [Xj_6: $i > $i] :
( ( Xp @ Xj_6 )
=> ( Xp
@ ^ [Xx: $i] : ( Xj @ ( Xj_6 @ Xx ) ) ) ) )
=> ( Xp
@ ^ [Xx: $i] : ( Xk @ ( Xj @ Xx ) ) ) )
=> ! [Xp: ( $i > $i ) > $o] :
( ( ( Xp @ Xj )
& ! [Xj_7: $i > $i] :
( ( Xp @ Xj_7 )
=> ( Xp
@ ^ [Xx: $i] : ( Xj @ ( Xj_7 @ Xx ) ) ) ) )
=> ( Xp @ Xk ) ) ) ) ).
%------------------------------------------------------------------------------