TPTP Problem File: SEU909^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU909^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem from SET-TOP-CATEGORY-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1161 [Bro09]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.57 v7.4.0, 0.22 v7.2.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 12 ( 2 equ; 0 cnn)
% Maximal formula atoms : 12 ( 12 avg)
% Number of connectives : 63 ( 0 ~; 2 |; 12 &; 32 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 20 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 1 usr; 1 con; 0-2 aty)
% Number of variables : 23 ( 4 ^; 17 !; 2 ?; 23 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cA,type,
cA: ( a > $o ) > $o ).
thf(cDOMTHM8_pme,conjecture,
( ! [Xx: a > $o] :
( ( cA @ Xx )
=> ( cA @ Xx ) )
& ! [Xe: a > $o] :
( ( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy: a] : $false )
& ! [Xx: a > $o] :
( ( X @ Xx )
=> ! [Xt: a] :
( ( Xe @ Xt )
=> ( X
@ ^ [Xz: a] :
( ( Xx @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe ) )
& ! [Xx: a] :
( ( Xe @ Xx )
=> ? [S: a > $o] :
( ( cA @ S )
& ( S @ Xx ) ) ) )
=> ( ! [Xx: a > $o] :
( ( ( cA @ Xx )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xx @ Xx0 ) ) )
=> ( cA @ Xx ) )
& ! [Xx: a > $o] :
( ( ( cA @ Xx )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xx @ Xx0 ) ) )
=> ? [Xe_0: a > $o] :
( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy: a] : $false )
& ! [Xx0: a > $o] :
( ( X @ Xx0 )
=> ! [Xt: a] :
( ( Xe_0 @ Xt )
=> ( X
@ ^ [Xz: a] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe_0 ) )
& ! [Xx0: a] :
( ( Xe_0 @ Xx0 )
=> ( Xx @ Xx0 ) )
& ! [Xy: a > $o] :
( ( ( cA @ Xy )
& ! [Xx0: a] :
( ( Xe_0 @ Xx0 )
=> ( Xy @ Xx0 ) ) )
=> ( ( cA @ Xy )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xy @ Xx0 ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------