TPTP Problem File: SEU904^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU904^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem THM126
% Version : Especial.
% English : The composition of homomorphisms of binary operators is a
% homomorphism. Suggested by [BL+86].
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0521 [Bro09]
% : THM126 [TPS]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 3 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 102 ( 0 ~; 0 |; 19 &; 70 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 22 avg)
% Number of types : 4 ( 3 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 29 ( 0 ^; 29 !; 0 ?; 29 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(g_type,type,
g: $tType ).
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(cTHM126_pme,conjecture,
! [Xh1: g > b,Xh2: b > a,Xs1: g > $o,Xf1: g > g > g,Xs2: b > $o,Xf2: b > b > b,Xs3: a > $o,Xf3: a > a > a] :
( ( ! [Xx: g,Xy: g] :
( ( ( Xs1 @ Xx )
& ( Xs1 @ Xy ) )
=> ( Xs1 @ ( Xf1 @ Xx @ Xy ) ) )
& ! [Xx: b,Xy: b] :
( ( ( Xs2 @ Xx )
& ( Xs2 @ Xy ) )
=> ( Xs2 @ ( Xf2 @ Xx @ Xy ) ) )
& ! [Xx: g] :
( ( Xs1 @ Xx )
=> ( Xs2 @ ( Xh1 @ Xx ) ) )
& ! [Xx: g,Xy: g] :
( ( ( Xs1 @ Xx )
& ( Xs1 @ Xy ) )
=> ( ( Xh1 @ ( Xf1 @ Xx @ Xy ) )
= ( Xf2 @ ( Xh1 @ Xx ) @ ( Xh1 @ Xy ) ) ) )
& ! [Xx: b,Xy: b] :
( ( ( Xs2 @ Xx )
& ( Xs2 @ Xy ) )
=> ( Xs2 @ ( Xf2 @ Xx @ Xy ) ) )
& ! [Xx: a,Xy: a] :
( ( ( Xs3 @ Xx )
& ( Xs3 @ Xy ) )
=> ( Xs3 @ ( Xf3 @ Xx @ Xy ) ) )
& ! [Xx: b] :
( ( Xs2 @ Xx )
=> ( Xs3 @ ( Xh2 @ Xx ) ) )
& ! [Xx: b,Xy: b] :
( ( ( Xs2 @ Xx )
& ( Xs2 @ Xy ) )
=> ( ( Xh2 @ ( Xf2 @ Xx @ Xy ) )
= ( Xf3 @ ( Xh2 @ Xx ) @ ( Xh2 @ Xy ) ) ) ) )
=> ( ! [Xx: g,Xy: g] :
( ( ( Xs1 @ Xx )
& ( Xs1 @ Xy ) )
=> ( Xs1 @ ( Xf1 @ Xx @ Xy ) ) )
& ! [Xx: a,Xy: a] :
( ( ( Xs3 @ Xx )
& ( Xs3 @ Xy ) )
=> ( Xs3 @ ( Xf3 @ Xx @ Xy ) ) )
& ! [Xx: g] :
( ( Xs1 @ Xx )
=> ( Xs3 @ ( Xh2 @ ( Xh1 @ Xx ) ) ) )
& ! [Xx: g,Xy: g] :
( ( ( Xs1 @ Xx )
& ( Xs1 @ Xy ) )
=> ( ( Xh2 @ ( Xh1 @ ( Xf1 @ Xx @ Xy ) ) )
= ( Xf3 @ ( Xh2 @ ( Xh1 @ Xx ) ) @ ( Xh2 @ ( Xh1 @ Xy ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------