TPTP Problem File: SEU875^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU875^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Finite sets)
% Problem : TPS problem from SET-TOPOLOGY-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1044 [Bro09]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.57 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.80 v4.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 7 ( 1 equ; 0 cnn)
% Maximal formula atoms : 7 ( 7 avg)
% Number of connectives : 35 ( 0 ~; 1 |; 8 &; 18 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 17 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 2 con; 0-2 aty)
% Number of variables : 11 ( 2 ^; 8 !; 1 ?; 11 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(t,type,
t: a ).
thf(cA,type,
cA: ( a > $o ) > $o ).
thf(cDOMLEMMA5_pme,conjecture,
( ! [Xx: a > $o] :
( ( ( cA @ Xx )
& ( Xx @ t ) )
=> ( cA @ Xx ) )
& ! [Xx: a > $o] :
( ( ( cA @ Xx )
& ( Xx @ t ) )
=> ? [Xe: a > $o] :
( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy: a] : $false )
& ! [Xx0: a > $o] :
( ( X @ Xx0 )
=> ! [Xt0: a] :
( ( Xe @ Xt0 )
=> ( X
@ ^ [Xz: a] :
( ( Xx0 @ Xz )
| ( Xt0 = Xz ) ) ) ) ) )
=> ( X @ Xe ) )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xx @ Xx0 ) )
& ! [Xy: a > $o] :
( ( ( cA @ Xy )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xy @ Xx0 ) ) )
=> ( ( cA @ Xy )
& ( Xy @ t ) ) ) ) ) ) ).
%------------------------------------------------------------------------------