TPTP Problem File: SEU857^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU857^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem GAZING-THM43
% Version : Especial.
% English :
% Refs : [Bar92] Barker-Plummer D (1992), Gazing: An Approach to the Pr
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0497 [Bro09]
% : 43 [Bar92]
% : GAZING-THM43 [TPS]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.33 v7.2.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 50 ( 12 ~; 6 |; 12 &; 20 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 5 ( 2 ^; 3 !; 0 ?; 5 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cGAZING_THM43_pme,conjecture,
! [S: a > $o,T: a > $o,U: a > $o] :
( ( ^ [Xz: a] :
( ( ( ( ( S @ Xz )
& ~ ( T @ Xz ) )
| ( ( T @ Xz )
& ~ ( S @ Xz ) ) )
& ~ ( U @ Xz ) )
| ( ( U @ Xz )
& ~ ( ( ( S @ Xz )
& ~ ( T @ Xz ) )
| ( ( T @ Xz )
& ~ ( S @ Xz ) ) ) ) ) )
= ( ^ [Xz: a] :
( ( ( S @ Xz )
& ~ ( ( ( T @ Xz )
& ~ ( U @ Xz ) )
| ( ( U @ Xz )
& ~ ( T @ Xz ) ) ) )
| ( ( ( ( T @ Xz )
& ~ ( U @ Xz ) )
| ( ( U @ Xz )
& ~ ( T @ Xz ) ) )
& ~ ( S @ Xz ) ) ) ) ) ).
%------------------------------------------------------------------------------