TPTP Problem File: SEU790^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU790^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set - Second Wizard of Oz Examples
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! S:i.breln1 A S ->
% breln1invset A (breln1compset A R S) =
% breln1compset A (breln1invset A S) (breln1invset A R)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC292l [Bro08]
% Status : Theorem
% Rating : 1.00 v7.4.0, 0.78 v7.2.0, 0.75 v7.0.0, 1.00 v6.2.0, 0.71 v5.5.0, 0.67 v5.4.0, 1.00 v3.7.0
% Syntax : Number of formulae : 23 ( 8 unt; 14 typ; 8 def)
% Number of atoms : 68 ( 10 equ; 0 cnn)
% Maximal formula atoms : 11 ( 7 avg)
% Number of connectives : 178 ( 0 ~; 0 |; 2 &; 135 @)
% ( 0 <=>; 41 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 15 ( 14 usr; 8 con; 0-3 aty)
% Number of variables : 35 ( 0 ^; 34 !; 1 ?; 35 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=355
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(subbreln1_type,type,
subbreln1: $o ).
thf(subbreln1,definition,
( subbreln1
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( subset @ R @ S ) ) ) ) ) ) ).
thf(breln1invset_type,type,
breln1invset: $i > $i > $i ).
thf(breln1invprop_type,type,
breln1invprop: $o ).
thf(breln1invprop,definition,
( breln1invprop
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ( breln1 @ A @ ( breln1invset @ A @ R ) ) ) ) ) ).
thf(breln1invI_type,type,
breln1invI: $o ).
thf(breln1invI,definition,
( breln1invI
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xy @ Xx ) @ ( breln1invset @ A @ R ) ) ) ) ) ) ) ) ).
thf(breln1invE_type,type,
breln1invE: $o ).
thf(breln1invE,definition,
( breln1invE
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xy @ Xx ) @ ( breln1invset @ A @ R ) )
=> ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ) ).
thf(breln1compset_type,type,
breln1compset: $i > $i > $i > $i ).
thf(breln1compprop_type,type,
breln1compprop: $o ).
thf(breln1compprop,definition,
( breln1compprop
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( breln1 @ A @ ( breln1compset @ A @ R @ S ) ) ) ) ) ) ).
thf(breln1compI_type,type,
breln1compI: $o ).
thf(breln1compI,definition,
( breln1compI
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ! [Xz: $i] :
( ( in @ Xz @ A )
=> ( ( in @ ( kpair @ Xx @ Xz ) @ R )
=> ( ( in @ ( kpair @ Xz @ Xy ) @ S )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( breln1compset @ A @ R @ S ) ) ) ) ) ) ) ) ) ) ) ).
thf(breln1compE_type,type,
breln1compE: $o ).
thf(breln1compE,definition,
( breln1compE
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ ( breln1compset @ A @ R @ S ) )
=> ? [Xz: $i] :
( ( in @ Xz @ A )
& ( in @ ( kpair @ Xx @ Xz ) @ R )
& ( in @ ( kpair @ Xz @ Xy ) @ S ) ) ) ) ) ) ) ) ) ).
thf(woz2W,conjecture,
( setextsub
=> ( subbreln1
=> ( breln1invprop
=> ( breln1invI
=> ( breln1invE
=> ( breln1compprop
=> ( breln1compI
=> ( breln1compE
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( ( breln1invset @ A @ ( breln1compset @ A @ R @ S ) )
= ( breln1compset @ A @ ( breln1invset @ A @ S ) @ ( breln1invset @ A @ R ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------