TPTP Problem File: SEU788^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU788^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Binary Relations on a Set
% Version : Especial > Reduced > Especial.
% English : (! A:i.! R:i.breln1 A R -> (! S:i.breln1 A S ->
% binunion R S = binunion S R))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC290l [Bro08]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0, 0.36 v7.5.0, 0.43 v7.4.0, 0.44 v7.3.0, 0.56 v7.2.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.60 v5.2.0, 0.80 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 18 ( 6 unt; 11 typ; 6 def)
% Number of atoms : 53 ( 8 equ; 0 cnn)
% Maximal formula atoms : 9 ( 7 avg)
% Number of connectives : 130 ( 0 ~; 1 |; 0 &; 96 @)
% ( 0 <=>; 33 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 6 con; 0-2 aty)
% Number of variables : 28 ( 0 ^; 28 !; 0 ?; 28 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=353
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(breln1_type,type,
breln1: $i > $i > $o ).
thf(subbreln1_type,type,
subbreln1: $o ).
thf(subbreln1,definition,
( subbreln1
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( subset @ R @ S ) ) ) ) ) ) ).
thf(breln1unionprop_type,type,
breln1unionprop: $o ).
thf(breln1unionprop,definition,
( breln1unionprop
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( breln1 @ A @ ( binunion @ R @ S ) ) ) ) ) ) ).
thf(breln1unionIL_type,type,
breln1unionIL: $o ).
thf(breln1unionIL,definition,
( breln1unionIL
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) ) ) ) ) ) ) ) ) ).
thf(breln1unionIR_type,type,
breln1unionIR: $o ).
thf(breln1unionIR,definition,
( breln1unionIR
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ S )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) ) ) ) ) ) ) ) ) ).
thf(breln1unionE_type,type,
breln1unionE: $o ).
thf(breln1unionE,definition,
( breln1unionE
= ( ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ ( binunion @ R @ S ) )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
| ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) ) ) ) ) ) ) ).
thf(breln1unionCommutes,conjecture,
( setextsub
=> ( subbreln1
=> ( breln1unionprop
=> ( breln1unionIL
=> ( breln1unionIR
=> ( breln1unionE
=> ! [A: $i,R: $i] :
( ( breln1 @ A @ R )
=> ! [S: $i] :
( ( breln1 @ A @ S )
=> ( ( binunion @ R @ S )
= ( binunion @ S @ R ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------