TPTP Problem File: SEU764^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU764^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Typed Set Theory - First Wizard of Oz Examples - WoZ1 Problems
% Version : Especial > Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! Y:i.in Y (powerset A) ->
% (! Z:i.in Z (powerset A) -> (! W:i.in W (powerset A) ->
% setminus A (binintersect (binunion X Y) (binunion Z W)) =
% binunion (binintersect (setminus A X) (setminus A Y))
% (binintersect (setminus A Z) (setminus A W))))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC266l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 12 ( 3 unt; 8 typ; 3 def)
% Number of atoms : 23 ( 6 equ; 0 cnn)
% Maximal formula atoms : 8 ( 5 avg)
% Number of connectives : 90 ( 0 ~; 0 |; 0 &; 77 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 0 ^; 14 !; 0 ?; 14 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=325
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(setminus_type,type,
setminus: $i > $i > $i ).
thf(binunionT_lem_type,type,
binunionT_lem: $o ).
thf(binunionT_lem,definition,
( binunionT_lem
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( in @ ( binunion @ X @ Y ) @ ( powerset @ A ) ) ) ) ) ) ).
thf(demorgan1_type,type,
demorgan1: $o ).
thf(demorgan1,definition,
( demorgan1
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( ( setminus @ A @ ( binintersect @ X @ Y ) )
= ( binunion @ ( setminus @ A @ X ) @ ( setminus @ A @ Y ) ) ) ) ) ) ) ).
thf(demorgan2_type,type,
demorgan2: $o ).
thf(demorgan2,definition,
( demorgan2
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( ( setminus @ A @ ( binunion @ X @ Y ) )
= ( binintersect @ ( setminus @ A @ X ) @ ( setminus @ A @ Y ) ) ) ) ) ) ) ).
thf(woz1_2,conjecture,
( binunionT_lem
=> ( demorgan1
=> ( demorgan2
=> ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Z: $i] :
( ( in @ Z @ ( powerset @ A ) )
=> ! [W: $i] :
( ( in @ W @ ( powerset @ A ) )
=> ( ( setminus @ A @ ( binintersect @ ( binunion @ X @ Y ) @ ( binunion @ Z @ W ) ) )
= ( binunion @ ( binintersect @ ( setminus @ A @ X ) @ ( setminus @ A @ Y ) ) @ ( binintersect @ ( setminus @ A @ Z ) @ ( setminus @ A @ W ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------