TPTP Problem File: SEU757^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU757^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Typed Set Theory - Laws for Typed Sets - DeMorgan Laws
% Version : Especial > Reduced > Especial.
% English : (! A:i.! X:i.in X (powerset A) -> (! Y:i.in Y (powerset A) ->
% setminus A (binunion X Y) = binintersect (setminus A X)
% (setminus A Y)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC259l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.57 v7.4.0, 0.33 v7.3.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v6.1.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 18 ( 6 unt; 11 typ; 6 def)
% Number of atoms : 48 ( 8 equ; 0 cnn)
% Maximal formula atoms : 9 ( 6 avg)
% Number of connectives : 137 ( 0 ~; 0 |; 0 &; 108 @)
% ( 0 <=>; 29 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 6 con; 0-2 aty)
% Number of variables : 24 ( 0 ^; 24 !; 0 ?; 24 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=318
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(setminus_type,type,
setminus: $i > $i > $i ).
thf(binintersectT_lem_type,type,
binintersectT_lem: $o ).
thf(binintersectT_lem,definition,
( binintersectT_lem
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( in @ ( binintersect @ X @ Y ) @ ( powerset @ A ) ) ) ) ) ) ).
thf(binunionT_lem_type,type,
binunionT_lem: $o ).
thf(binunionT_lem,definition,
( binunionT_lem
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( in @ ( binunion @ X @ Y ) @ ( powerset @ A ) ) ) ) ) ) ).
thf(complementT_lem_type,type,
complementT_lem: $o ).
thf(complementT_lem,definition,
( complementT_lem
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ( in @ ( setminus @ A @ X ) @ ( powerset @ A ) ) ) ) ) ).
thf(setextT_type,type,
setextT: $o ).
thf(setextT,definition,
( setextT
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ X )
=> ( in @ Xx @ Y ) ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ Y )
=> ( in @ Xx @ X ) ) )
=> ( X = Y ) ) ) ) ) ) ) ).
thf(demorgan2a_type,type,
demorgan2a: $o ).
thf(demorgan2a,definition,
( demorgan2a
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ ( setminus @ A @ ( binunion @ X @ Y ) ) )
=> ( in @ Xx @ ( binintersect @ ( setminus @ A @ X ) @ ( setminus @ A @ Y ) ) ) ) ) ) ) ) ) ).
thf(demorgan2b_type,type,
demorgan2b: $o ).
thf(demorgan2b,definition,
( demorgan2b
= ( ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ ( binintersect @ ( setminus @ A @ X ) @ ( setminus @ A @ Y ) ) )
=> ( in @ Xx @ ( setminus @ A @ ( binunion @ X @ Y ) ) ) ) ) ) ) ) ) ).
thf(demorgan2,conjecture,
( binintersectT_lem
=> ( binunionT_lem
=> ( complementT_lem
=> ( setextT
=> ( demorgan2a
=> ( demorgan2b
=> ! [A: $i,X: $i] :
( ( in @ X @ ( powerset @ A ) )
=> ! [Y: $i] :
( ( in @ Y @ ( powerset @ A ) )
=> ( ( setminus @ A @ ( binunion @ X @ Y ) )
= ( binintersect @ ( setminus @ A @ X ) @ ( setminus @ A @ Y ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------