TPTP Problem File: SEU705^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU705^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Conditionals
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:o.! x:i.in x A -> (! y:i.in y A ->
% in (if A phi x y) A))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC207l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0, 0.45 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 19 ( 6 unt; 12 typ; 6 def)
% Number of atoms : 33 ( 11 equ; 0 cnn)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 59 ( 2 ~; 2 |; 5 &; 39 @)
% ( 0 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 16 ( 16 >; 0 *; 0 +; 0 <<)
% Number of symbols : 13 ( 12 usr; 5 con; 0-4 aty)
% Number of variables : 23 ( 8 ^; 14 !; 1 ?; 23 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=261
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(sepSubset_type,type,
sepSubset: $o ).
thf(sepSubset,definition,
( sepSubset
= ( ! [A: $i,Xphi: $i > $o] :
( subset
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
@ A ) ) ) ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(theprop_type,type,
theprop: $o ).
thf(theprop,definition,
( theprop
= ( ! [X: $i] :
( ( singleton @ X )
=> ( in @ ( setunion @ X ) @ X ) ) ) ) ).
thf(ifSingleton_type,type,
ifSingleton: $o ).
thf(ifSingleton,definition,
( ifSingleton
= ( ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( singleton
@ ( dsetconstr @ A
@ ^ [Xz: $i] :
( ( Xphi
& ( Xz = Xx ) )
| ( ~ Xphi
& ( Xz = Xy ) ) ) ) ) ) ) ) ) ).
thf(if_type,type,
if: $i > $o > $i > $i > $i ).
thf(if,definition,
( if
= ( ^ [A: $i,Xphi: $o,Xx: $i,Xy: $i] :
( setunion
@ ( dsetconstr @ A
@ ^ [Xz: $i] :
( ( Xphi
& ( Xz = Xx ) )
| ( ~ Xphi
& ( Xz = Xy ) ) ) ) ) ) ) ).
thf(ifp,conjecture,
( subsetE
=> ( sepSubset
=> ( theprop
=> ( ifSingleton
=> ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( in @ ( if @ A @ Xphi @ Xx @ Xy ) @ A ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------