TPTP Problem File: SEU703^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU703^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Conditionals
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:o.! x:i.in x A -> (! y:i.in y A -> phi ->
% dsetconstr A (^ z:i.phi & z = x | ~phi & z = y) =
% setadjoin x emptyset))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC205l [Bro08]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.70 v8.2.0, 0.77 v8.1.0, 0.73 v7.5.0, 0.57 v7.4.0, 0.44 v7.3.0, 0.56 v7.2.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.57 v6.1.0, 0.71 v5.5.0, 0.67 v5.4.0, 1.00 v5.2.0, 0.80 v5.0.0, 0.60 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 17 ( 6 unt; 10 typ; 6 def)
% Number of atoms : 42 ( 16 equ; 0 cnn)
% Maximal formula atoms : 9 ( 6 avg)
% Number of connectives : 72 ( 2 ~; 2 |; 4 &; 42 @)
% ( 1 <=>; 21 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 7 con; 0-2 aty)
% Number of variables : 26 ( 3 ^; 23 !; 0 ?; 26 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=255
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(setext_type,type,
setext: $o ).
thf(setext,definition,
( setext
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( A = B ) ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(eqinunit_type,type,
eqinunit: $o ).
thf(eqinunit,definition,
( eqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(in__Cong_type,type,
in__Cong: $o ).
thf(in__Cong,definition,
( in__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
<=> ( in @ Xy @ B ) ) ) ) ) ) ).
thf(iftrueProp1_type,type,
iftrueProp1: $o ).
thf(iftrueProp1,definition,
( iftrueProp1
= ( ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( Xphi
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xz: $i] :
( ( Xphi
& ( Xz = Xx ) )
| ( ~ Xphi
& ( Xz = Xy ) ) ) ) ) ) ) ) ) ) ).
thf(iftrueProp2,conjecture,
( dsetconstrER
=> ( setext
=> ( uniqinunit
=> ( eqinunit
=> ( in__Cong
=> ( iftrueProp1
=> ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( Xphi
=> ( ( dsetconstr @ A
@ ^ [Xz: $i] :
( ( Xphi
& ( Xz = Xx ) )
| ( ~ Xphi
& ( Xz = Xy ) ) ) )
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------