TPTP Problem File: SEU696^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU696^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Extensionality and Beta Reduction
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! f:i.func A B f -> lam A B (^ x:i.ap A B f x) = f)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC198l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.46 v8.1.0, 0.36 v7.5.0, 0.43 v7.4.0, 0.22 v7.2.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.43 v6.1.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 0.67 v3.7.0
% Syntax : Number of formulae : 15 ( 5 unt; 9 typ; 5 def)
% Number of atoms : 31 ( 10 equ; 0 cnn)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 85 ( 0 ~; 0 |; 0 &; 69 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 21 ( 21 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 4 con; 0-4 aty)
% Number of variables : 29 ( 8 ^; 21 !; 0 ?; 29 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=402
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dpsetconstr_type,type,
dpsetconstr: $i > $i > ( $i > $i > $o ) > $i ).
thf(func_type,type,
func: $i > $i > $i > $o ).
thf(ap_type,type,
ap: $i > $i > $i > $i > $i ).
thf(app_type,type,
app: $o ).
thf(app,definition,
( app
= ( ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( ap @ A @ B @ Xf @ Xx ) @ B ) ) ) ) ) ).
thf(lam_type,type,
lam: $i > $i > ( $i > $i ) > $i ).
thf(lam,definition,
( lam
= ( ^ [A: $i,B: $i,Xf: $i > $i] :
( dpsetconstr @ A @ B
@ ^ [Xx: $i,Xy: $i] :
( ( Xf @ Xx )
= Xy ) ) ) ) ).
thf(lamp_type,type,
lamp: $o ).
thf(lamp,definition,
( lamp
= ( ! [A: $i,B: $i,Xf: $i > $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( Xf @ Xx ) @ B ) )
=> ( func @ A @ B
@ ( lam @ A @ B
@ ^ [Xx: $i] : ( Xf @ Xx ) ) ) ) ) ) ).
thf(funcext_type,type,
funcext: $o ).
thf(funcext,definition,
( funcext
= ( ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xg: $i] :
( ( func @ A @ B @ Xg )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( ap @ A @ B @ Xf @ Xx )
= ( ap @ A @ B @ Xg @ Xx ) ) )
=> ( Xf = Xg ) ) ) ) ) ) ).
thf(beta1_type,type,
beta1: $o ).
thf(beta1,definition,
( beta1
= ( ! [A: $i,B: $i,Xf: $i > $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( Xf @ Xx ) @ B ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( ap @ A @ B
@ ( lam @ A @ B
@ ^ [Xy: $i] : ( Xf @ Xy ) )
@ Xx )
= ( Xf @ Xx ) ) ) ) ) ) ).
thf(eta1,conjecture,
( app
=> ( lamp
=> ( funcext
=> ( beta1
=> ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ( ( lam @ A @ B
@ ^ [Xx: $i] : ( ap @ A @ B @ Xf @ Xx ) )
= Xf ) ) ) ) ) ) ).
%------------------------------------------------------------------------------