TPTP Problem File: SEU689^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU689^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Extensionality and Beta Reduction
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! R:i.breln A B R -> (! S:i.breln A B S ->
% (! x:i.in x A -> (! y:i.in y B -> in (kpair x y) R ->
% in (kpair x y) S)) -> subset R S))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC191l [Bro08]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.40 v8.2.0, 0.62 v8.1.0, 0.55 v7.5.0, 0.29 v7.4.0, 0.44 v7.2.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.60 v5.3.0, 1.00 v5.2.0, 0.60 v4.1.0, 0.67 v3.7.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 24 ( 3 equ; 0 cnn)
% Maximal formula atoms : 9 ( 6 avg)
% Number of connectives : 63 ( 0 ~; 0 |; 0 &; 47 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 2 con; 0-3 aty)
% Number of variables : 19 ( 3 ^; 16 !; 0 ?; 19 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=243
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(brelnall1_type,type,
brelnall1: $o ).
thf(brelnall1,definition,
( brelnall1
= ( ! [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
=> ! [Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( Xphi @ ( kpair @ Xx @ Xy ) ) ) ) )
=> ! [Xx: $i] :
( ( in @ Xx @ R )
=> ( Xphi @ Xx ) ) ) ) ) ) ).
thf(subbreln,conjecture,
( subsetI1
=> ( brelnall1
=> ! [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
=> ! [S: $i] :
( ( breln @ A @ B @ S )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ R )
=> ( in @ ( kpair @ Xx @ Xy ) @ S ) ) ) )
=> ( subset @ R @ S ) ) ) ) ) ) ).
%------------------------------------------------------------------------------