TPTP Problem File: SEU687^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU687^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Extensionality and Beta Reduction
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! f:i.func A B f -> (! g:i.func A B g ->
% (! x:i.in x A -> ap A B f x = ap A B g x) -> (! x:i.in x A ->
% (! y:i.in y B -> in (kpair x y) g -> in (kpair x y) f))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC189l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.46 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v6.1.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 1.00 v4.0.1, 0.67 v4.0.0, 1.00 v3.7.0
% Syntax : Number of formulae : 21 ( 6 unt; 14 typ; 6 def)
% Number of atoms : 38 ( 9 equ; 0 cnn)
% Maximal formula atoms : 10 ( 5 avg)
% Number of connectives : 97 ( 0 ~; 0 |; 2 &; 79 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 28 ( 28 >; 0 *; 0 +; 0 <<)
% Number of symbols : 15 ( 14 usr; 3 con; 0-4 aty)
% Number of variables : 29 ( 11 ^; 17 !; 1 ?; 29 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=414
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(func_type,type,
func: $i > $i > $i > $o ).
thf(func,definition,
( func
= ( ^ [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
& ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ex1 @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ).
thf(ap_type,type,
ap: $i > $i > $i > $i > $i ).
thf(funcGraphProp1_type,type,
funcGraphProp1: $o ).
thf(funcGraphProp1,definition,
( funcGraphProp1
= ( ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( kpair @ Xx @ ( ap @ A @ B @ Xf @ Xx ) ) @ Xf ) ) ) ) ) ).
thf(funcGraphProp2_type,type,
funcGraphProp2: $o ).
thf(funcGraphProp2,definition,
( funcGraphProp2
= ( ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ Xf )
=> ( ( ap @ A @ B @ Xf @ Xx )
= Xy ) ) ) ) ) ) ) ).
thf(funcextLem,conjecture,
( funcGraphProp1
=> ( funcGraphProp2
=> ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xg: $i] :
( ( func @ A @ B @ Xg )
=> ( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ( ap @ A @ B @ Xf @ Xx )
= ( ap @ A @ B @ Xg @ Xx ) ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy ) @ Xg )
=> ( in @ ( kpair @ Xx @ Xy ) @ Xf ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------