TPTP Problem File: SEU679^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU679^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Lambda Abstraction
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! f:i>i.(! x:i.in x A -> in (f x) B) ->
% func A B (lam A B (^ x:i.f x)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC181l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.31 v8.1.0, 0.36 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 21 ( 6 unt; 14 typ; 6 def)
% Number of atoms : 28 ( 9 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 59 ( 0 ~; 0 |; 2 &; 51 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 36 ( 36 >; 0 *; 0 +; 0 <<)
% Number of symbols : 15 ( 14 usr; 2 con; 0-3 aty)
% Number of variables : 29 ( 19 ^; 9 !; 1 ?; 29 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=237
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(dpsetconstr_type,type,
dpsetconstr: $i > $i > ( $i > $i > $o ) > $i ).
thf(func_type,type,
func: $i > $i > $i > $o ).
thf(func,definition,
( func
= ( ^ [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
& ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ex1 @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ).
thf(lamProp_type,type,
lamProp: $o ).
thf(lamProp,definition,
( lamProp
= ( ! [A: $i,B: $i,Xf: $i > $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( Xf @ Xx ) @ B ) )
=> ( func @ A @ B
@ ( dpsetconstr @ A @ B
@ ^ [Xx: $i,Xy: $i] :
( ( Xf @ Xx )
= Xy ) ) ) ) ) ) ).
thf(lam_type,type,
lam: $i > $i > ( $i > $i ) > $i ).
thf(lam,definition,
( lam
= ( ^ [A: $i,B: $i,Xf: $i > $i] :
( dpsetconstr @ A @ B
@ ^ [Xx: $i,Xy: $i] :
( ( Xf @ Xx )
= Xy ) ) ) ) ).
thf(lamp,conjecture,
( lamProp
=> ! [A: $i,B: $i,Xf: $i > $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( Xf @ Xx ) @ B ) )
=> ( func @ A @ B
@ ( lam @ A @ B
@ ^ [Xx: $i] : ( Xf @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------