TPTP Problem File: SEU676^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU676^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Functions - Application
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! f:i.in f (funcSet A B) -> (! x:i.in x A ->
% in (ap A B f x) B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC178l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v3.7.0
% Syntax : Number of formulae : 26 ( 8 unt; 17 typ; 8 def)
% Number of atoms : 34 ( 9 equ; 0 cnn)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 78 ( 0 ~; 0 |; 2 &; 68 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 32 ( 32 >; 0 *; 0 +; 0 <<)
% Number of symbols : 18 ( 17 usr; 3 con; 0-4 aty)
% Number of variables : 32 ( 19 ^; 12 !; 1 ?; 32 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=228
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(breln_type,type,
breln: $i > $i > $i > $o ).
thf(breln,definition,
( breln
= ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).
thf(func_type,type,
func: $i > $i > $i > $o ).
thf(func,definition,
( func
= ( ^ [A: $i,B: $i,R: $i] :
( ( breln @ A @ B @ R )
& ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( ex1 @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ).
thf(funcSet_type,type,
funcSet: $i > $i > $i ).
thf(funcSet,definition,
( funcSet
= ( ^ [A: $i,B: $i] :
( dsetconstr @ ( powerset @ ( cartprod @ A @ B ) )
@ ^ [Xf: $i] : ( func @ A @ B @ Xf ) ) ) ) ).
thf(ap_type,type,
ap: $i > $i > $i > $i > $i ).
thf(ap,definition,
( ap
= ( ^ [A: $i,B: $i,Xf: $i,Xx: $i] :
( setunion
@ ( dsetconstr @ B
@ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ Xf ) ) ) ) ) ).
thf(app_type,type,
app: $o ).
thf(app,definition,
( app
= ( ! [A: $i,B: $i,Xf: $i] :
( ( func @ A @ B @ Xf )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( ap @ A @ B @ Xf @ Xx ) @ B ) ) ) ) ) ).
thf(infuncsetfunc_type,type,
infuncsetfunc: $o ).
thf(infuncsetfunc,definition,
( infuncsetfunc
= ( ! [A: $i,B: $i,Xf: $i] :
( ( in @ Xf @ ( funcSet @ A @ B ) )
=> ( func @ A @ B @ Xf ) ) ) ) ).
thf(ap2p,conjecture,
( app
=> ( infuncsetfunc
=> ! [A: $i,B: $i,Xf: $i] :
( ( in @ Xf @ ( funcSet @ A @ B ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ ( ap @ A @ B @ Xf @ Xx ) @ B ) ) ) ) ) ).
%------------------------------------------------------------------------------