TPTP Problem File: SEU675^2.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU675^2 : TPTP v9.0.0. Released v3.7.0.
% Domain   : Set Theory
% Problem  : Functions - Application
% Version  : Especial > Reduced > Especial.
% English  : (! A:i.! B:i.! f:i.in f (funcSet A B) -> func A B f)

% Refs     : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source   : [Bro08]
% Names    : ZFC177l [Bro08]

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0, 0.43 v7.4.0, 0.33 v7.3.0, 0.22 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.1.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v3.7.0
% Syntax   : Number of formulae    :   21 (   6 unt;  14 typ;   6 def)
%            Number of atoms       :   24 (   7 equ;   0 cnn)
%            Maximal formula atoms :    3 (   3 avg)
%            Number of connectives :   50 (   0   ~;   0   |;   2   &;  44   @)
%                                         (   0 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   2 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   28 (  28   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   15 (  14 usr;   2 con; 0-3 aty)
%            Number of variables   :   23 (  15   ^;   7   !;   1   ?;  23   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : http://mathgate.info/detsetitem.php?id=227
%------------------------------------------------------------------------------
thf(in_type,type,
    in: $i > $i > $o ).

thf(emptyset_type,type,
    emptyset: $i ).

thf(setadjoin_type,type,
    setadjoin: $i > $i > $i ).

thf(powerset_type,type,
    powerset: $i > $i ).

thf(dsetconstr_type,type,
    dsetconstr: $i > ( $i > $o ) > $i ).

thf(dsetconstrER_type,type,
    dsetconstrER: $o ).

thf(dsetconstrER,definition,
    ( dsetconstrER
    = ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
          ( ( in @ Xx
            @ ( dsetconstr @ A
              @ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
         => ( Xphi @ Xx ) ) ) ) ).

thf(subset_type,type,
    subset: $i > $i > $o ).

thf(kpair_type,type,
    kpair: $i > $i > $i ).

thf(cartprod_type,type,
    cartprod: $i > $i > $i ).

thf(singleton_type,type,
    singleton: $i > $o ).

thf(singleton,definition,
    ( singleton
    = ( ^ [A: $i] :
        ? [Xx: $i] :
          ( ( in @ Xx @ A )
          & ( A
            = ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).

thf(ex1_type,type,
    ex1: $i > ( $i > $o ) > $o ).

thf(ex1,definition,
    ( ex1
    = ( ^ [A: $i,Xphi: $i > $o] :
          ( singleton
          @ ( dsetconstr @ A
            @ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).

thf(breln_type,type,
    breln: $i > $i > $i > $o ).

thf(breln,definition,
    ( breln
    = ( ^ [A: $i,B: $i,C: $i] : ( subset @ C @ ( cartprod @ A @ B ) ) ) ) ).

thf(func_type,type,
    func: $i > $i > $i > $o ).

thf(func,definition,
    ( func
    = ( ^ [A: $i,B: $i,R: $i] :
          ( ( breln @ A @ B @ R )
          & ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ( ex1 @ B
                @ ^ [Xy: $i] : ( in @ ( kpair @ Xx @ Xy ) @ R ) ) ) ) ) ) ).

thf(funcSet_type,type,
    funcSet: $i > $i > $i ).

thf(funcSet,definition,
    ( funcSet
    = ( ^ [A: $i,B: $i] :
          ( dsetconstr @ ( powerset @ ( cartprod @ A @ B ) )
          @ ^ [Xf: $i] : ( func @ A @ B @ Xf ) ) ) ) ).

thf(infuncsetfunc,conjecture,
    ( dsetconstrER
   => ! [A: $i,B: $i,Xf: $i] :
        ( ( in @ Xf @ ( funcSet @ A @ B ) )
       => ( func @ A @ B @ Xf ) ) ) ).

%------------------------------------------------------------------------------