TPTP Problem File: SEU668^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU668^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Sets of Pairs
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! phi:i>(i>o).! x:i.in x A -> (! y:i.in y B ->
% in (kpair x y) (dpsetconstr A B (^ z,u:i.phi z u)) -> phi x y))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC170l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 13 ( 4 unt; 8 typ; 4 def)
% Number of atoms : 21 ( 9 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 53 ( 0 ~; 0 |; 3 &; 41 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 19 ( 19 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 3 con; 0-3 aty)
% Number of variables : 25 ( 7 ^; 16 !; 2 ?; 25 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=234
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(setukpairinjL_type,type,
setukpairinjL: $o ).
thf(setukpairinjL,definition,
( setukpairinjL
= ( ! [Xx: $i,Xy: $i,Xz: $i,Xu: $i] :
( ( ( kpair @ Xx @ Xy )
= ( kpair @ Xz @ Xu ) )
=> ( Xx = Xz ) ) ) ) ).
thf(setukpairinjR_type,type,
setukpairinjR: $o ).
thf(setukpairinjR,definition,
( setukpairinjR
= ( ! [Xx: $i,Xy: $i,Xz: $i,Xu: $i] :
( ( ( kpair @ Xx @ Xy )
= ( kpair @ Xz @ Xu ) )
=> ( Xy = Xu ) ) ) ) ).
thf(dpsetconstr_type,type,
dpsetconstr: $i > $i > ( $i > $i > $o ) > $i ).
thf(dpsetconstr,definition,
( dpsetconstr
= ( ^ [A: $i,B: $i,Xphi: $i > $i > $o] :
( dsetconstr @ ( cartprod @ A @ B )
@ ^ [Xu: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ? [Xy: $i] :
( ( in @ Xy @ B )
& ( Xphi @ Xx @ Xy )
& ( Xu
= ( kpair @ Xx @ Xy ) ) ) ) ) ) ) ).
thf(dpsetconstrERa,conjecture,
( dsetconstrER
=> ( setukpairinjL
=> ( setukpairinjR
=> ! [A: $i,B: $i,Xphi: $i > $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( in @ ( kpair @ Xx @ Xy )
@ ( dpsetconstr @ A @ B
@ ^ [Xz: $i,Xu: $i] : ( Xphi @ Xz @ Xu ) ) )
=> ( Xphi @ Xx @ Xy ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------