TPTP Problem File: SEU666^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU666^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Sets of Pairs
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! phi:i>(i>o).subset (dpsetconstr A B
% (^ x,y:i.phi x y)) (cartprod A B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC168l [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 12 ( 3 unt; 8 typ; 3 def)
% Number of atoms : 16 ( 4 equ; 0 cnn)
% Maximal formula atoms : 3 ( 4 avg)
% Number of connectives : 42 ( 0 ~; 0 |; 3 &; 34 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 21 ( 21 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 2 con; 0-3 aty)
% Number of variables : 18 ( 7 ^; 9 !; 2 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=230
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrEL_type,type,
dsetconstrEL: $o ).
thf(dsetconstrEL,definition,
( dsetconstrEL
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(dpsetconstr_type,type,
dpsetconstr: $i > $i > ( $i > $i > $o ) > $i ).
thf(dpsetconstr,definition,
( dpsetconstr
= ( ^ [A: $i,B: $i,Xphi: $i > $i > $o] :
( dsetconstr @ ( cartprod @ A @ B )
@ ^ [Xu: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ? [Xy: $i] :
( ( in @ Xy @ B )
& ( Xphi @ Xx @ Xy )
& ( Xu
= ( kpair @ Xx @ Xy ) ) ) ) ) ) ) ).
thf(dpsetconstrSub,conjecture,
( dsetconstrEL
=> ( subsetI2
=> ! [A: $i,B: $i,Xphi: $i > $i > $o] :
( subset
@ ( dpsetconstr @ A @ B
@ ^ [Xx: $i,Xy: $i] : ( Xphi @ Xx @ Xy ) )
@ ( cartprod @ A @ B ) ) ) ) ).
%------------------------------------------------------------------------------