TPTP Problem File: SEU655^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU655^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Properties of Pairs
% Version : Especial > Reduced > Especial.
% English : (! u:i.iskpair u -> singleton (dsetconstr (setunion u)
% (^ x:i.u = kpair (kfst u) x)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC157l [Bro08]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.70 v8.2.0, 0.69 v8.1.0, 0.64 v7.5.0, 0.57 v7.4.0, 0.67 v7.3.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.71 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 0.71 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 1.00 v5.2.0, 0.80 v5.0.0, 1.00 v3.7.0
% Syntax : Number of formulae : 21 ( 7 unt; 13 typ; 7 def)
% Number of atoms : 32 ( 14 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 71 ( 0 ~; 0 |; 3 &; 58 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 18 ( 18 >; 0 *; 0 +; 0 <<)
% Number of symbols : 14 ( 13 usr; 4 con; 0-2 aty)
% Number of variables : 23 ( 9 ^; 11 !; 3 ?; 23 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=211
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(iskpair_type,type,
iskpair: $i > $o ).
thf(iskpair,definition,
( iskpair
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
& ? [Xy: $i] :
( ( in @ Xy @ ( setunion @ A ) )
& ( A
= ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) ) ) ) ) ) ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(kpair,definition,
( kpair
= ( ^ [Xx: $i,Xy: $i] : ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) ) ) ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(ex1I_type,type,
ex1I: $o ).
thf(ex1I,definition,
( ex1I
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( Xphi @ Xy )
=> ( Xy = Xx ) ) )
=> ( ex1 @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(kfst_type,type,
kfst: $i > $i ).
thf(kfstpairEq_type,type,
kfstpairEq: $o ).
thf(kfstpairEq,definition,
( kfstpairEq
= ( ! [Xx: $i,Xy: $i] :
( ( kfst @ ( kpair @ Xx @ Xy ) )
= Xx ) ) ) ).
thf(setukpairinjR_type,type,
setukpairinjR: $o ).
thf(setukpairinjR,definition,
( setukpairinjR
= ( ! [Xx: $i,Xy: $i,Xz: $i,Xu: $i] :
( ( ( kpair @ Xx @ Xy )
= ( kpair @ Xz @ Xu ) )
=> ( Xy = Xu ) ) ) ) ).
thf(ksndsingleton,conjecture,
( ex1I
=> ( kfstpairEq
=> ( setukpairinjR
=> ! [Xu: $i] :
( ( iskpair @ Xu )
=> ( singleton
@ ( dsetconstr @ ( setunion @ Xu )
@ ^ [Xx: $i] :
( Xu
= ( kpair @ ( kfst @ Xu ) @ Xx ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------