TPTP Problem File: SEU643^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU643^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Properties of Pairs
% Version : Especial > Reduced > Especial.
% English : (! u:i.iskpair u -> singleton (dsetconstr (setunion u) (^ x:i.in
% (setadjoin x emptyset) u)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC145l [Bro08]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.50 v8.2.0, 0.54 v8.1.0, 0.55 v7.5.0, 0.43 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.80 v6.2.0, 0.71 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.80 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 18 ( 6 unt; 11 typ; 6 def)
% Number of atoms : 31 ( 10 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 73 ( 0 ~; 0 |; 3 &; 60 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 4 con; 0-2 aty)
% Number of variables : 20 ( 7 ^; 10 !; 3 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=199
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(setadjoinIL_type,type,
setadjoinIL: $o ).
thf(setadjoinIL,definition,
( setadjoinIL
= ( ! [Xx: $i,Xy: $i] : ( in @ Xx @ ( setadjoin @ Xx @ Xy ) ) ) ) ).
thf(iskpair_type,type,
iskpair: $i > $o ).
thf(iskpair,definition,
( iskpair
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
& ? [Xy: $i] :
( ( in @ Xy @ ( setunion @ A ) )
& ( A
= ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) ) ) ) ) ) ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(ex1_type,type,
ex1: $i > ( $i > $o ) > $o ).
thf(ex1,definition,
( ex1
= ( ^ [A: $i,Xphi: $i > $o] :
( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(ex1I_type,type,
ex1I: $o ).
thf(ex1I,definition,
( ex1I
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( Xphi @ Xy )
=> ( Xy = Xx ) ) )
=> ( ex1 @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(setukpairinjL1_type,type,
setukpairinjL1: $o ).
thf(setukpairinjL1,definition,
( setukpairinjL1
= ( ! [Xx: $i,Xy: $i,Xz: $i] :
( ( in @ ( setadjoin @ Xz @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) )
=> ( Xx = Xz ) ) ) ) ).
thf(kfstsingleton,conjecture,
( setadjoinIL
=> ( ex1I
=> ( setukpairinjL1
=> ! [Xu: $i] :
( ( iskpair @ Xu )
=> ( singleton
@ ( dsetconstr @ ( setunion @ Xu )
@ ^ [Xx: $i] : ( in @ ( setadjoin @ Xx @ emptyset ) @ Xu ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------