TPTP Problem File: SEU637^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU637^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Singletons
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:i>o.(! x:i.in x A -> (! y:i.in y A -> phi x ->
% phi y -> x = y)) -> (? x:i.in x A & phi x) -> singleton
% (dsetconstr A (^ x:i.phi x)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC139l [Bro08]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.50 v8.2.0, 0.54 v8.1.0, 0.45 v7.5.0, 0.57 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.80 v6.2.0, 0.57 v6.1.0, 0.86 v6.0.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.80 v5.2.0, 1.00 v5.0.0, 0.80 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 19 ( 7 unt; 11 typ; 7 def)
% Number of atoms : 41 ( 12 equ; 0 cnn)
% Maximal formula atoms : 11 ( 5 avg)
% Number of connectives : 78 ( 0 ~; 0 |; 2 &; 54 @)
% ( 0 <=>; 22 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 7 con; 0-2 aty)
% Number of variables : 28 ( 5 ^; 21 !; 2 ?; 28 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=469
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(dsetconstrEL_type,type,
dsetconstrEL: $o ).
thf(dsetconstrEL,definition,
( dsetconstrEL
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(setext_type,type,
setext: $o ).
thf(setext,definition,
( setext
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( A = B ) ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(eqinunit_type,type,
eqinunit: $o ).
thf(eqinunit,definition,
( eqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(singleton_type,type,
singleton: $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [A: $i] :
? [Xx: $i] :
( ( in @ Xx @ A )
& ( A
= ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(singletonprop,conjecture,
( dsetconstrI
=> ( dsetconstrEL
=> ( dsetconstrER
=> ( setext
=> ( uniqinunit
=> ( eqinunit
=> ! [A: $i,Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) )
=> ( ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ( singleton
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------