TPTP Problem File: SEU630^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU630^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Ordered Pairs - Cartesian Products
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.in x A -> (! y:i.in y B -> in (kpair x y)
% (cartprod A B)))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC132l [Bro08]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0, 0.29 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 15 ( 4 unt; 10 typ; 4 def)
% Number of atoms : 19 ( 5 equ; 0 cnn)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 62 ( 0 ~; 0 |; 2 &; 52 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 3 con; 0-2 aty)
% Number of variables : 19 ( 6 ^; 11 !; 2 ?; 19 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=187
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(kpair_type,type,
kpair: $i > $i > $i ).
thf(kpair,definition,
( kpair
= ( ^ [Xx: $i,Xy: $i] : ( setadjoin @ ( setadjoin @ Xx @ emptyset ) @ ( setadjoin @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) @ emptyset ) ) ) ) ).
thf(cartprod_type,type,
cartprod: $i > $i > $i ).
thf(cartprod,definition,
( cartprod
= ( ^ [A: $i,B: $i] :
( dsetconstr @ ( powerset @ ( powerset @ ( binunion @ A @ B ) ) )
@ ^ [Xx: $i] :
? [Xy: $i] :
( ( in @ Xy @ A )
& ? [Xz: $i] :
( ( in @ Xz @ B )
& ( Xx
= ( kpair @ Xy @ Xz ) ) ) ) ) ) ) ).
thf(ubforcartprodlem3_type,type,
ubforcartprodlem3: $o ).
thf(ubforcartprodlem3,definition,
( ubforcartprodlem3
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( powerset @ ( powerset @ ( binunion @ A @ B ) ) ) ) ) ) ) ) ).
thf(cartprodpairin,conjecture,
( dsetconstrI
=> ( ubforcartprodlem3
=> ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( in @ ( kpair @ Xx @ Xy ) @ ( cartprod @ A @ B ) ) ) ) ) ) ).
%------------------------------------------------------------------------------