TPTP Problem File: SEU613^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU613^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Operations on Sets - Symmetric Difference
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.~(in x A) -> in x B -> in x (symdiff A B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC115l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.20 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 10 ( 3 unt; 6 typ; 3 def)
% Number of atoms : 16 ( 3 equ; 0 cnn)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 41 ( 3 ~; 1 |; 0 &; 30 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 13 ( 4 ^; 9 !; 0 ?; 13 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=491
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionIR_type,type,
binunionIR: $o ).
thf(binunionIR,definition,
( binunionIR
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ ( binunion @ A @ B ) ) ) ) ) ).
thf(symdiff_type,type,
symdiff: $i > $i > $i ).
thf(symdiff,definition,
( symdiff
= ( ^ [A: $i,B: $i] :
( dsetconstr @ ( binunion @ A @ B )
@ ^ [Xx: $i] :
( ~ ( in @ Xx @ A )
| ~ ( in @ Xx @ B ) ) ) ) ) ).
thf(symdiffI2,conjecture,
( dsetconstrI
=> ( binunionIR
=> ! [A: $i,B: $i,Xx: $i] :
( ~ ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ ( symdiff @ A @ B ) ) ) ) ) ) ).
%------------------------------------------------------------------------------