TPTP Problem File: SEU613^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU613^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Operations on Sets - Symmetric Difference
% Version : Especial.
% English : (! A:i.! B:i.! x:i.~(in x A) -> in x B -> in x (symdiff A B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC115g [Bro08]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.40 v8.2.0, 0.62 v8.1.0, 0.64 v7.5.0, 0.57 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.60 v5.2.0, 0.80 v5.0.0, 0.60 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 282 ( 132 unt; 149 typ; 132 def)
% Number of atoms : 704 ( 189 equ; 0 cnn)
% Maximal formula atoms : 132 ( 5 avg)
% Number of connectives : 1136 ( 45 ~; 7 |; 28 &; 727 @)
% ( 14 <=>; 315 =>; 0 <=; 0 <~>)
% Maximal formula depth : 138 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 64 ( 64 >; 0 *; 0 +; 0 <<)
% Number of symbols : 152 ( 149 usr; 133 con; 0-2 aty)
% Number of variables : 383 ( 33 ^; 321 !; 29 ?; 383 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=491
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(exu_type,type,
exu: ( $i > $o ) > $o ).
thf(exu,definition,
( exu
= ( ^ [Xphi: $i > $o] :
? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ).
thf(setextAx_type,type,
setextAx: $o ).
thf(setextAx,definition,
( setextAx
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
<=> ( in @ Xx @ B ) )
=> ( A = B ) ) ) ) ).
thf(emptyset_type,type,
emptyset: $i ).
thf(emptysetAx_type,type,
emptysetAx: $o ).
thf(emptysetAx,definition,
( emptysetAx
= ( ! [Xx: $i] :
~ ( in @ Xx @ emptyset ) ) ) ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setadjoinAx_type,type,
setadjoinAx: $o ).
thf(setadjoinAx,definition,
( setadjoinAx
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
<=> ( ( Xy = Xx )
| ( in @ Xy @ A ) ) ) ) ) ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(powersetAx_type,type,
powersetAx: $o ).
thf(powersetAx,definition,
( powersetAx
= ( ! [A: $i,B: $i] :
( ( in @ B @ ( powerset @ A ) )
<=> ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(setunionAx_type,type,
setunionAx: $o ).
thf(setunionAx,definition,
( setunionAx
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
<=> ? [B: $i] :
( ( in @ Xx @ B )
& ( in @ B @ A ) ) ) ) ) ).
thf(omega_type,type,
omega: $i ).
thf(omega0Ax_type,type,
omega0Ax: $o ).
thf(omega0Ax,definition,
( omega0Ax
= ( in @ emptyset @ omega ) ) ).
thf(omegaSAx_type,type,
omegaSAx: $o ).
thf(omegaSAx,definition,
( omegaSAx
= ( ! [Xx: $i] :
( ( in @ Xx @ omega )
=> ( in @ ( setadjoin @ Xx @ Xx ) @ omega ) ) ) ) ).
thf(omegaIndAx_type,type,
omegaIndAx: $o ).
thf(omegaIndAx,definition,
( omegaIndAx
= ( ! [A: $i] :
( ( ( in @ emptyset @ A )
& ! [Xx: $i] :
( ( ( in @ Xx @ omega )
& ( in @ Xx @ A ) )
=> ( in @ ( setadjoin @ Xx @ Xx ) @ A ) ) )
=> ! [Xx: $i] :
( ( in @ Xx @ omega )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(replAx_type,type,
replAx: $o ).
thf(replAx,definition,
( replAx
= ( ! [Xphi: $i > $i > $o,A: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( exu
@ ^ [Xy: $i] : ( Xphi @ Xx @ Xy ) ) )
=> ? [B: $i] :
! [Xx: $i] :
( ( in @ Xx @ B )
<=> ? [Xy: $i] :
( ( in @ Xy @ A )
& ( Xphi @ Xy @ Xx ) ) ) ) ) ) ).
thf(foundationAx_type,type,
foundationAx: $o ).
thf(foundationAx,definition,
( foundationAx
= ( ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ? [B: $i] :
( ( in @ B @ A )
& ~ ? [Xx: $i] :
( ( in @ Xx @ B )
& ( in @ Xx @ A ) ) ) ) ) ) ).
thf(wellorderingAx_type,type,
wellorderingAx: $o ).
thf(wellorderingAx,definition,
( wellorderingAx
= ( ! [A: $i] :
? [B: $i] :
( ! [C: $i] :
( ( in @ C @ B )
=> ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ A ) ) )
& ! [Xx: $i,Xy: $i] :
( ( ( in @ Xx @ A )
& ( in @ Xy @ A ) )
=> ( ! [C: $i] :
( ( in @ C @ B )
=> ( ( in @ Xx @ C )
<=> ( in @ Xy @ C ) ) )
=> ( Xx = Xy ) ) )
& ! [C: $i,D: $i] :
( ( ( in @ C @ B )
& ( in @ D @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ D ) )
| ! [Xx: $i] :
( ( in @ Xx @ D )
=> ( in @ Xx @ C ) ) ) )
& ! [C: $i] :
( ( ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ A ) )
& ? [Xx: $i] : ( in @ Xx @ C ) )
=> ? [D: $i,Xx: $i] :
( ( in @ D @ B )
& ( in @ Xx @ C )
& ~ ? [Xy: $i] :
( ( in @ Xy @ D )
& ( in @ Xy @ C ) )
& ! [E: $i] :
( ( in @ E @ B )
=> ( ! [Xy: $i] :
( ( in @ Xy @ E )
=> ( in @ Xy @ D ) )
| ( in @ Xx @ E ) ) ) ) ) ) ) ) ).
thf(descr_type,type,
descr: ( $i > $o ) > $i ).
thf(descrp_type,type,
descrp: $o ).
thf(descrp,definition,
( descrp
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ( Xphi
@ ( descr
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ) ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(dsetconstrEL_type,type,
dsetconstrEL: $o ).
thf(dsetconstrEL,definition,
( dsetconstrEL
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(exuE1_type,type,
exuE1: $o ).
thf(exuE1,definition,
( exuE1
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ) ).
thf(prop2set_type,type,
prop2set: $o > $i ).
thf(prop2setE_type,type,
prop2setE: $o ).
thf(prop2setE,definition,
( prop2setE
= ( ! [Xphi: $o,Xx: $i] :
( ( in @ Xx @ ( prop2set @ Xphi ) )
=> Xphi ) ) ) ).
thf(emptysetE_type,type,
emptysetE: $o ).
thf(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> ! [Xphi: $o] : Xphi ) ) ) ).
thf(emptysetimpfalse_type,type,
emptysetimpfalse: $o ).
thf(emptysetimpfalse,definition,
( emptysetimpfalse
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> $false ) ) ) ).
thf(notinemptyset_type,type,
notinemptyset: $o ).
thf(notinemptyset,definition,
( notinemptyset
= ( ! [Xx: $i] :
~ ( in @ Xx @ emptyset ) ) ) ).
thf(exuE3e_type,type,
exuE3e: $o ).
thf(exuE3e,definition,
( exuE3e
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] : ( Xphi @ Xx ) ) ) ) ).
thf(setext_type,type,
setext: $o ).
thf(setext,definition,
( setext
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( A = B ) ) ) ) ) ).
thf(emptyI_type,type,
emptyI: $o ).
thf(emptyI,definition,
( emptyI
= ( ! [A: $i] :
( ! [Xx: $i] :
~ ( in @ Xx @ A )
=> ( A = emptyset ) ) ) ) ).
thf(noeltsimpempty_type,type,
noeltsimpempty: $o ).
thf(noeltsimpempty,definition,
( noeltsimpempty
= ( ! [A: $i] :
( ! [Xx: $i] :
~ ( in @ Xx @ A )
=> ( A = emptyset ) ) ) ) ).
thf(setbeta_type,type,
setbeta: $o ).
thf(setbeta,definition,
( setbeta
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
<=> ( Xphi @ Xx ) ) ) ) ) ).
thf(nonempty_type,type,
nonempty: $i > $o ).
thf(nonempty,definition,
( nonempty
= ( ^ [Xx: $i] : ( Xx != emptyset ) ) ) ).
thf(nonemptyE1_type,type,
nonemptyE1: $o ).
thf(nonemptyE1,definition,
( nonemptyE1
= ( ! [A: $i] :
( ( nonempty @ A )
=> ? [Xx: $i] : ( in @ Xx @ A ) ) ) ) ).
thf(nonemptyI_type,type,
nonemptyI: $o ).
thf(nonemptyI,definition,
( nonemptyI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( nonempty
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(nonemptyI1_type,type,
nonemptyI1: $o ).
thf(nonemptyI1,definition,
( nonemptyI1
= ( ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ( nonempty @ A ) ) ) ) ).
thf(setadjoinIL_type,type,
setadjoinIL: $o ).
thf(setadjoinIL,definition,
( setadjoinIL
= ( ! [Xx: $i,Xy: $i] : ( in @ Xx @ ( setadjoin @ Xx @ Xy ) ) ) ) ).
thf(emptyinunitempty_type,type,
emptyinunitempty: $o ).
thf(emptyinunitempty,definition,
( emptyinunitempty
= ( in @ emptyset @ ( setadjoin @ emptyset @ emptyset ) ) ) ).
thf(setadjoinIR_type,type,
setadjoinIR: $o ).
thf(setadjoinIR,definition,
( setadjoinIR
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ A )
=> ( in @ Xy @ ( setadjoin @ Xx @ A ) ) ) ) ) ).
thf(setadjoinE_type,type,
setadjoinE: $o ).
thf(setadjoinE,definition,
( setadjoinE
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
=> ! [Xphi: $o] :
( ( ( Xy = Xx )
=> Xphi )
=> ( ( ( in @ Xy @ A )
=> Xphi )
=> Xphi ) ) ) ) ) ).
thf(setadjoinOr_type,type,
setadjoinOr: $o ).
thf(setadjoinOr,definition,
( setadjoinOr
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
=> ( ( Xy = Xx )
| ( in @ Xy @ A ) ) ) ) ) ).
thf(setoftrueEq_type,type,
setoftrueEq: $o ).
thf(setoftrueEq,definition,
( setoftrueEq
= ( ! [A: $i] :
( ( dsetconstr @ A
@ ^ [Xx: $i] : $true )
= A ) ) ) ).
thf(powersetI_type,type,
powersetI: $o ).
thf(powersetI,definition,
( powersetI
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( in @ B @ ( powerset @ A ) ) ) ) ) ).
thf(emptyinPowerset_type,type,
emptyinPowerset: $o ).
thf(emptyinPowerset,definition,
( emptyinPowerset
= ( ! [A: $i] : ( in @ emptyset @ ( powerset @ A ) ) ) ) ).
thf(emptyInPowerset_type,type,
emptyInPowerset: $o ).
thf(emptyInPowerset,definition,
( emptyInPowerset
= ( ! [A: $i] : ( in @ emptyset @ ( powerset @ A ) ) ) ) ).
thf(powersetE_type,type,
powersetE: $o ).
thf(powersetE,definition,
( powersetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ B @ ( powerset @ A ) )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(setunionI_type,type,
setunionI: $o ).
thf(setunionI,definition,
( setunionI
= ( ! [A: $i,Xx: $i,B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> ( in @ Xx @ ( setunion @ A ) ) ) ) ) ) ).
thf(setunionE_type,type,
setunionE: $o ).
thf(setunionE,definition,
( setunionE
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
=> ! [Xphi: $o] :
( ! [B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> Xphi ) )
=> Xphi ) ) ) ) ).
thf(subPowSU_type,type,
subPowSU: $o ).
thf(subPowSU,definition,
( subPowSU
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ ( powerset @ ( setunion @ A ) ) ) ) ) ) ).
thf(exuE2_type,type,
exuE2: $o ).
thf(exuE2,definition,
( exuE2
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] :
! [Xy: $i] :
( ( Xphi @ Xy )
<=> ( Xy = Xx ) ) ) ) ) ).
thf(nonemptyImpWitness_type,type,
nonemptyImpWitness: $o ).
thf(nonemptyImpWitness,definition,
( nonemptyImpWitness
= ( ! [A: $i] :
( ( nonempty @ A )
=> ? [Xx: $i] :
( ( in @ Xx @ A )
& $true ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(notinsingleton_type,type,
notinsingleton: $o ).
thf(notinsingleton,definition,
( notinsingleton
= ( ! [Xx: $i,Xy: $i] :
( ( Xx != Xy )
=> ~ ( in @ Xy @ ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(eqinunit_type,type,
eqinunit: $o ).
thf(eqinunit,definition,
( eqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(singletonsswitch_type,type,
singletonsswitch: $o ).
thf(singletonsswitch,definition,
( singletonsswitch
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( in @ Xy @ ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(upairsetE_type,type,
upairsetE: $o ).
thf(upairsetE,definition,
( upairsetE
= ( ! [Xx: $i,Xy: $i,Xz: $i] :
( ( in @ Xz @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) )
=> ( ( Xz = Xx )
| ( Xz = Xy ) ) ) ) ) ).
thf(upairsetIL_type,type,
upairsetIL: $o ).
thf(upairsetIL,definition,
( upairsetIL
= ( ! [Xx: $i,Xy: $i] : ( in @ Xx @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(upairsetIR_type,type,
upairsetIR: $o ).
thf(upairsetIR,definition,
( upairsetIR
= ( ! [Xx: $i,Xy: $i] : ( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(emptyE1_type,type,
emptyE1: $o ).
thf(emptyE1,definition,
( emptyE1
= ( ! [A: $i,Xphi: $i > $o] :
( ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ( ( ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
= emptyset )
=> $false ) ) ) ) ).
thf(vacuousDall_type,type,
vacuousDall: $o ).
thf(vacuousDall,definition,
( vacuousDall
= ( ! [Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ emptyset )
=> ( Xphi @ Xx ) ) ) ) ).
thf(quantDeMorgan1_type,type,
quantDeMorgan1: $o ).
thf(quantDeMorgan1,definition,
( quantDeMorgan1
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( Xphi @ Xx ) )
=> ? [Xx: $i] :
( ( in @ Xx @ A )
& ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(quantDeMorgan2_type,type,
quantDeMorgan2: $o ).
thf(quantDeMorgan2,definition,
( quantDeMorgan2
= ( ! [A: $i,Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ~ ( Xphi @ Xx ) )
=> ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) ) ) ) ) ).
thf(quantDeMorgan3_type,type,
quantDeMorgan3: $o ).
thf(quantDeMorgan3,definition,
( quantDeMorgan3
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(quantDeMorgan4_type,type,
quantDeMorgan4: $o ).
thf(quantDeMorgan4,definition,
( quantDeMorgan4
= ( ! [A: $i,Xphi: $i > $o] :
( ? [Xx: $i] :
( ( in @ Xx @ A )
& ~ ( Xphi @ Xx ) )
=> ~ ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( Xphi @ Xx ) ) ) ) ) ).
thf(prop2setI_type,type,
prop2setI: $o ).
thf(prop2setI,definition,
( prop2setI
= ( ! [Xphi: $o] :
( Xphi
=> ( in @ emptyset @ ( prop2set @ Xphi ) ) ) ) ) ).
thf(set2prop_type,type,
set2prop: $i > $o ).
thf(prop2set2propI_type,type,
prop2set2propI: $o ).
thf(prop2set2propI,definition,
( prop2set2propI
= ( ! [Xphi: $o] :
( Xphi
=> ( set2prop @ ( prop2set @ Xphi ) ) ) ) ) ).
thf(notdexE_type,type,
notdexE: $o ).
thf(notdexE,definition,
( notdexE
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(notdallE_type,type,
notdallE: $o ).
thf(notdallE,definition,
( notdallE
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( Xphi @ Xx ) )
=> ? [Xx: $i] :
( ( in @ Xx @ A )
& ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(exuI1_type,type,
exuI1: $o ).
thf(exuI1,definition,
( exuI1
= ( ! [Xphi: $i > $o] :
( ? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(exuI3_type,type,
exuI3: $o ).
thf(exuI3,definition,
( exuI3
= ( ! [Xphi: $i > $o] :
( ? [Xx: $i] : ( Xphi @ Xx )
=> ( ! [Xx: $i,Xy: $i] :
( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ) ).
thf(exuI2_type,type,
exuI2: $o ).
thf(exuI2,definition,
( exuI2
= ( ! [Xphi: $i > $o] :
( ? [Xx: $i] :
! [Xy: $i] :
( ( Xphi @ Xy )
<=> ( Xy = Xx ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(inCongP_type,type,
inCongP: $o ).
thf(inCongP,definition,
( inCongP
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
=> ( in @ Xy @ B ) ) ) ) ) ) ).
thf(in__Cong_type,type,
in__Cong: $o ).
thf(in__Cong,definition,
( in__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
<=> ( in @ Xy @ B ) ) ) ) ) ) ).
thf(exuE3u_type,type,
exuE3u: $o ).
thf(exuE3u,definition,
( exuE3u
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ! [Xx: $i,Xy: $i] :
( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ) ).
thf(exu__Cong_type,type,
exu__Cong: $o ).
thf(exu__Cong,definition,
( exu__Cong
= ( ! [Xphi: $i > $o,Xpsi: $i > $o] :
( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( Xphi @ Xx )
<=> ( Xpsi @ Xy ) ) )
=> ( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
<=> ( exu
@ ^ [Xx: $i] : ( Xpsi @ Xx ) ) ) ) ) ) ).
thf(emptyset__Cong_type,type,
emptyset__Cong: $o ).
thf(emptyset__Cong,definition,
( emptyset__Cong
= ( emptyset = emptyset ) ) ).
thf(setadjoin__Cong_type,type,
setadjoin__Cong: $o ).
thf(setadjoin__Cong,definition,
( setadjoin__Cong
= ( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ! [Xz: $i,Xu: $i] :
( ( Xz = Xu )
=> ( ( setadjoin @ Xx @ Xz )
= ( setadjoin @ Xy @ Xu ) ) ) ) ) ) ).
thf(powerset__Cong_type,type,
powerset__Cong: $o ).
thf(powerset__Cong,definition,
( powerset__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( ( powerset @ A )
= ( powerset @ B ) ) ) ) ) ).
thf(setunion__Cong_type,type,
setunion__Cong: $o ).
thf(setunion__Cong,definition,
( setunion__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( ( setunion @ A )
= ( setunion @ B ) ) ) ) ) ).
thf(omega__Cong_type,type,
omega__Cong: $o ).
thf(omega__Cong,definition,
( omega__Cong
= ( omega = omega ) ) ).
thf(exuEu_type,type,
exuEu: $o ).
thf(exuEu,definition,
( exuEu
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ! [Xx: $i,Xy: $i] :
( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ) ).
thf(descr__Cong_type,type,
descr__Cong: $o ).
thf(descr__Cong,definition,
( descr__Cong
= ( ! [Xphi: $i > $o,Xpsi: $i > $o] :
( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( Xphi @ Xx )
<=> ( Xpsi @ Xy ) ) )
=> ( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ( ( exu
@ ^ [Xx: $i] : ( Xpsi @ Xx ) )
=> ( ( descr
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
= ( descr
@ ^ [Xx: $i] : ( Xpsi @ Xx ) ) ) ) ) ) ) ) ).
thf(dsetconstr__Cong_type,type,
dsetconstr__Cong: $o ).
thf(dsetconstr__Cong,definition,
( dsetconstr__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xphi: $i > $o,Xpsi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( Xx = Xy )
=> ( ( Xphi @ Xx )
<=> ( Xpsi @ Xy ) ) ) ) )
=> ( ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
= ( dsetconstr @ B
@ ^ [Xx: $i] : ( Xpsi @ Xx ) ) ) ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(disjoint_type,type,
disjoint: $i > $i > $o ).
thf(setsmeet_type,type,
setsmeet: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(eqimpsubset2_type,type,
eqimpsubset2: $o ).
thf(eqimpsubset2,definition,
( eqimpsubset2
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( subset @ B @ A ) ) ) ) ).
thf(eqimpsubset1_type,type,
eqimpsubset1: $o ).
thf(eqimpsubset1,definition,
( eqimpsubset1
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(emptysetsubset_type,type,
emptysetsubset: $o ).
thf(emptysetsubset,definition,
( emptysetsubset
= ( ! [A: $i] : ( subset @ emptyset @ A ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(subsetE2_type,type,
subsetE2: $o ).
thf(subsetE2,definition,
( subsetE2
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ~ ( in @ Xx @ B )
=> ~ ( in @ Xx @ A ) ) ) ) ) ).
thf(notsubsetI_type,type,
notsubsetI: $o ).
thf(notsubsetI,definition,
( notsubsetI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ~ ( subset @ A @ B ) ) ) ) ) ).
thf(notequalI1_type,type,
notequalI1: $o ).
thf(notequalI1,definition,
( notequalI1
= ( ! [A: $i,B: $i] :
( ~ ( subset @ A @ B )
=> ( A != B ) ) ) ) ).
thf(notequalI2_type,type,
notequalI2: $o ).
thf(notequalI2,definition,
( notequalI2
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( A != B ) ) ) ) ) ).
thf(subsetRefl_type,type,
subsetRefl: $o ).
thf(subsetRefl,definition,
( subsetRefl
= ( ! [A: $i] : ( subset @ A @ A ) ) ) ).
thf(subsetTrans_type,type,
subsetTrans: $o ).
thf(subsetTrans,definition,
( subsetTrans
= ( ! [A: $i,B: $i,C: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ C )
=> ( subset @ A @ C ) ) ) ) ) ).
thf(setadjoinSub_type,type,
setadjoinSub: $o ).
thf(setadjoinSub,definition,
( setadjoinSub
= ( ! [Xx: $i,A: $i] : ( subset @ A @ ( setadjoin @ Xx @ A ) ) ) ) ).
thf(setadjoinSub2_type,type,
setadjoinSub2: $o ).
thf(setadjoinSub2,definition,
( setadjoinSub2
= ( ! [A: $i,Xx: $i,B: $i] :
( ( subset @ A @ B )
=> ( subset @ A @ ( setadjoin @ Xx @ B ) ) ) ) ) ).
thf(subset2powerset_type,type,
subset2powerset: $o ).
thf(subset2powerset,definition,
( subset2powerset
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( in @ A @ ( powerset @ B ) ) ) ) ) ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(subsetemptysetimpeq_type,type,
subsetemptysetimpeq: $o ).
thf(subsetemptysetimpeq,definition,
( subsetemptysetimpeq
= ( ! [A: $i] :
( ( subset @ A @ emptyset )
=> ( A = emptyset ) ) ) ) ).
thf(powersetI1_type,type,
powersetI1: $o ).
thf(powersetI1,definition,
( powersetI1
= ( ! [A: $i,B: $i] :
( ( subset @ B @ A )
=> ( in @ B @ ( powerset @ A ) ) ) ) ) ).
thf(powersetE1_type,type,
powersetE1: $o ).
thf(powersetE1,definition,
( powersetE1
= ( ! [A: $i,B: $i] :
( ( in @ B @ ( powerset @ A ) )
=> ( subset @ B @ A ) ) ) ) ).
thf(inPowerset_type,type,
inPowerset: $o ).
thf(inPowerset,definition,
( inPowerset
= ( ! [A: $i] : ( in @ A @ ( powerset @ A ) ) ) ) ).
thf(powersetsubset_type,type,
powersetsubset: $o ).
thf(powersetsubset,definition,
( powersetsubset
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( subset @ ( powerset @ A ) @ ( powerset @ B ) ) ) ) ) ).
thf(sepInPowerset_type,type,
sepInPowerset: $o ).
thf(sepInPowerset,definition,
( sepInPowerset
= ( ! [A: $i,Xphi: $i > $o] :
( in
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
@ ( powerset @ A ) ) ) ) ).
thf(sepSubset_type,type,
sepSubset: $o ).
thf(sepSubset,definition,
( sepSubset
= ( ! [A: $i,Xphi: $i > $o] :
( subset
@ ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
@ A ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionIL_type,type,
binunionIL: $o ).
thf(binunionIL,definition,
( binunionIL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ ( binunion @ A @ B ) ) ) ) ) ).
thf(upairset2IR_type,type,
upairset2IR: $o ).
thf(upairset2IR,definition,
( upairset2IR
= ( ! [Xx: $i,Xy: $i] : ( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(binunionIR_type,type,
binunionIR: $o ).
thf(binunionIR,definition,
( binunionIR
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ ( binunion @ A @ B ) ) ) ) ) ).
thf(binunionEcases_type,type,
binunionEcases: $o ).
thf(binunionEcases,definition,
( binunionEcases
= ( ! [A: $i,B: $i,Xx: $i,Xphi: $o] :
( ( in @ Xx @ ( binunion @ A @ B ) )
=> ( ( ( in @ Xx @ A )
=> Xphi )
=> ( ( ( in @ Xx @ B )
=> Xphi )
=> Xphi ) ) ) ) ) ).
thf(binunionE_type,type,
binunionE: $o ).
thf(binunionE,definition,
( binunionE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binunion @ A @ B ) )
=> ( ( in @ Xx @ A )
| ( in @ Xx @ B ) ) ) ) ) ).
thf(binunionLsub_type,type,
binunionLsub: $o ).
thf(binunionLsub,definition,
( binunionLsub
= ( ! [A: $i,B: $i] : ( subset @ A @ ( binunion @ A @ B ) ) ) ) ).
thf(binunionRsub_type,type,
binunionRsub: $o ).
thf(binunionRsub,definition,
( binunionRsub
= ( ! [A: $i,B: $i] : ( subset @ B @ ( binunion @ A @ B ) ) ) ) ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersectI_type,type,
binintersectI: $o ).
thf(binintersectI,definition,
( binintersectI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ ( binintersect @ A @ B ) ) ) ) ) ) ).
thf(binintersectSubset5_type,type,
binintersectSubset5: $o ).
thf(binintersectSubset5,definition,
( binintersectSubset5
= ( ! [A: $i,B: $i,C: $i] :
( ( subset @ C @ A )
=> ( ( subset @ C @ B )
=> ( subset @ C @ ( binintersect @ A @ B ) ) ) ) ) ) ).
thf(binintersectEL_type,type,
binintersectEL: $o ).
thf(binintersectEL,definition,
( binintersectEL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(binintersectLsub_type,type,
binintersectLsub: $o ).
thf(binintersectLsub,definition,
( binintersectLsub
= ( ! [A: $i,B: $i] : ( subset @ ( binintersect @ A @ B ) @ A ) ) ) ).
thf(binintersectSubset2_type,type,
binintersectSubset2: $o ).
thf(binintersectSubset2,definition,
( binintersectSubset2
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( binintersect @ A @ B )
= A ) ) ) ) ).
thf(binintersectSubset3_type,type,
binintersectSubset3: $o ).
thf(binintersectSubset3,definition,
( binintersectSubset3
= ( ! [A: $i,B: $i] :
( ( ( binintersect @ A @ B )
= B )
=> ( subset @ B @ A ) ) ) ) ).
thf(binintersectER_type,type,
binintersectER: $o ).
thf(binintersectER,definition,
( binintersectER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ B ) ) ) ) ).
thf(disjointsetsI1_type,type,
disjointsetsI1: $o ).
thf(disjointsetsI1,definition,
( disjointsetsI1
= ( ! [A: $i,B: $i] :
( ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( in @ Xx @ B ) )
=> ( ( binintersect @ A @ B )
= emptyset ) ) ) ) ).
thf(binintersectRsub_type,type,
binintersectRsub: $o ).
thf(binintersectRsub,definition,
( binintersectRsub
= ( ! [A: $i,B: $i] : ( subset @ ( binintersect @ A @ B ) @ B ) ) ) ).
thf(binintersectSubset4_type,type,
binintersectSubset4: $o ).
thf(binintersectSubset4,definition,
( binintersectSubset4
= ( ! [A: $i,B: $i] :
( ( subset @ B @ A )
=> ( ( binintersect @ A @ B )
= B ) ) ) ) ).
thf(binintersectSubset1_type,type,
binintersectSubset1: $o ).
thf(binintersectSubset1,definition,
( binintersectSubset1
= ( ! [A: $i,B: $i] :
( ( ( binintersect @ A @ B )
= A )
=> ( subset @ A @ B ) ) ) ) ).
thf(bs114d_type,type,
bs114d: $o ).
thf(bs114d,definition,
( bs114d
= ( ! [A: $i,B: $i,C: $i] :
( ( binintersect @ A @ ( binunion @ B @ C ) )
= ( binunion @ ( binintersect @ A @ B ) @ ( binintersect @ A @ C ) ) ) ) ) ).
thf(regular_type,type,
regular: $i > $o ).
thf(setminus_type,type,
setminus: $i > $i > $i ).
thf(setminusI_type,type,
setminusI: $o ).
thf(setminusI,definition,
( setminusI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( in @ Xx @ ( setminus @ A @ B ) ) ) ) ) ) ).
thf(setminusEL_type,type,
setminusEL: $o ).
thf(setminusEL,definition,
( setminusEL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( setminus @ A @ B ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(setminusER_type,type,
setminusER: $o ).
thf(setminusER,definition,
( setminusER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( setminus @ A @ B ) )
=> ~ ( in @ Xx @ B ) ) ) ) ).
thf(setminusSubset2_type,type,
setminusSubset2: $o ).
thf(setminusSubset2,definition,
( setminusSubset2
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( setminus @ A @ B )
= emptyset ) ) ) ) ).
thf(setminusERneg_type,type,
setminusERneg: $o ).
thf(setminusERneg,definition,
( setminusERneg
= ( ! [A: $i,B: $i,Xx: $i] :
( ~ ( in @ Xx @ ( setminus @ A @ B ) )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(setminusELneg_type,type,
setminusELneg: $o ).
thf(setminusELneg,definition,
( setminusELneg
= ( ! [A: $i,B: $i,Xx: $i] :
( ~ ( in @ Xx @ ( setminus @ A @ B ) )
=> ( ~ ( in @ Xx @ B )
=> ~ ( in @ Xx @ A ) ) ) ) ) ).
thf(setminusILneg_type,type,
setminusILneg: $o ).
thf(setminusILneg,definition,
( setminusILneg
= ( ! [A: $i,B: $i,Xx: $i] :
( ~ ( in @ Xx @ A )
=> ~ ( in @ Xx @ ( setminus @ A @ B ) ) ) ) ) ).
thf(setminusIRneg_type,type,
setminusIRneg: $o ).
thf(setminusIRneg,definition,
( setminusIRneg
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ B )
=> ~ ( in @ Xx @ ( setminus @ A @ B ) ) ) ) ) ).
thf(setminusLsub_type,type,
setminusLsub: $o ).
thf(setminusLsub,definition,
( setminusLsub
= ( ! [A: $i,B: $i] : ( subset @ ( setminus @ A @ B ) @ A ) ) ) ).
thf(setminusSubset1_type,type,
setminusSubset1: $o ).
thf(setminusSubset1,definition,
( setminusSubset1
= ( ! [A: $i,B: $i] :
( ( ( setminus @ A @ B )
= emptyset )
=> ( subset @ A @ B ) ) ) ) ).
thf(symdiff_type,type,
symdiff: $i > $i > $i ).
thf(symdiff,definition,
( symdiff
= ( ^ [A: $i,B: $i] :
( dsetconstr @ ( binunion @ A @ B )
@ ^ [Xx: $i] :
( ~ ( in @ Xx @ A )
| ~ ( in @ Xx @ B ) ) ) ) ) ).
thf(symdiffE_type,type,
symdiffE: $o ).
thf(symdiffE,definition,
( symdiffE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( symdiff @ A @ B ) )
=> ! [Xphi: $o] :
( ( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> Xphi ) )
=> ( ( ~ ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> Xphi ) )
=> Xphi ) ) ) ) ) ).
thf(symdiffI1_type,type,
symdiffI1: $o ).
thf(symdiffI1,definition,
( symdiffI1
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( in @ Xx @ ( symdiff @ A @ B ) ) ) ) ) ) ).
thf(symdiffI2,conjecture,
( setextAx
=> ( emptysetAx
=> ( setadjoinAx
=> ( powersetAx
=> ( setunionAx
=> ( omega0Ax
=> ( omegaSAx
=> ( omegaIndAx
=> ( replAx
=> ( foundationAx
=> ( wellorderingAx
=> ( descrp
=> ( dsetconstrI
=> ( dsetconstrEL
=> ( dsetconstrER
=> ( exuE1
=> ( prop2setE
=> ( emptysetE
=> ( emptysetimpfalse
=> ( notinemptyset
=> ( exuE3e
=> ( setext
=> ( emptyI
=> ( noeltsimpempty
=> ( setbeta
=> ( nonemptyE1
=> ( nonemptyI
=> ( nonemptyI1
=> ( setadjoinIL
=> ( emptyinunitempty
=> ( setadjoinIR
=> ( setadjoinE
=> ( setadjoinOr
=> ( setoftrueEq
=> ( powersetI
=> ( emptyinPowerset
=> ( emptyInPowerset
=> ( powersetE
=> ( setunionI
=> ( setunionE
=> ( subPowSU
=> ( exuE2
=> ( nonemptyImpWitness
=> ( uniqinunit
=> ( notinsingleton
=> ( eqinunit
=> ( singletonsswitch
=> ( upairsetE
=> ( upairsetIL
=> ( upairsetIR
=> ( emptyE1
=> ( vacuousDall
=> ( quantDeMorgan1
=> ( quantDeMorgan2
=> ( quantDeMorgan3
=> ( quantDeMorgan4
=> ( prop2setI
=> ( prop2set2propI
=> ( notdexE
=> ( notdallE
=> ( exuI1
=> ( exuI3
=> ( exuI2
=> ( inCongP
=> ( in__Cong
=> ( exuE3u
=> ( exu__Cong
=> ( emptyset__Cong
=> ( setadjoin__Cong
=> ( powerset__Cong
=> ( setunion__Cong
=> ( omega__Cong
=> ( exuEu
=> ( descr__Cong
=> ( dsetconstr__Cong
=> ( subsetI1
=> ( eqimpsubset2
=> ( eqimpsubset1
=> ( subsetI2
=> ( emptysetsubset
=> ( subsetE
=> ( subsetE2
=> ( notsubsetI
=> ( notequalI1
=> ( notequalI2
=> ( subsetRefl
=> ( subsetTrans
=> ( setadjoinSub
=> ( setadjoinSub2
=> ( subset2powerset
=> ( setextsub
=> ( subsetemptysetimpeq
=> ( powersetI1
=> ( powersetE1
=> ( inPowerset
=> ( powersetsubset
=> ( sepInPowerset
=> ( sepSubset
=> ( binunionIL
=> ( upairset2IR
=> ( binunionIR
=> ( binunionEcases
=> ( binunionE
=> ( binunionLsub
=> ( binunionRsub
=> ( binintersectI
=> ( binintersectSubset5
=> ( binintersectEL
=> ( binintersectLsub
=> ( binintersectSubset2
=> ( binintersectSubset3
=> ( binintersectER
=> ( disjointsetsI1
=> ( binintersectRsub
=> ( binintersectSubset4
=> ( binintersectSubset1
=> ( bs114d
=> ( setminusI
=> ( setminusEL
=> ( setminusER
=> ( setminusSubset2
=> ( setminusERneg
=> ( setminusELneg
=> ( setminusILneg
=> ( setminusIRneg
=> ( setminusLsub
=> ( setminusSubset1
=> ( symdiffE
=> ( symdiffI1
=> ! [A: $i,B: $i,Xx: $i] :
( ~ ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ ( symdiff @ A @ B ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------