TPTP Problem File: SEU611^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU611^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Operations on Sets - Symmetric Difference
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.in x (symdiff A B) -> (! phi:o.(in x A ->
% ~(in x B) -> phi) -> (~(in x A) -> in x B -> phi) -> phi))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC113l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.46 v8.1.0, 0.45 v7.5.0, 0.43 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 12 ( 4 unt; 7 typ; 4 def)
% Number of atoms : 23 ( 4 equ; 0 cnn)
% Maximal formula atoms : 8 ( 4 avg)
% Number of connectives : 60 ( 4 ~; 2 |; 0 &; 41 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 18 ( 5 ^; 13 !; 0 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=489
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrEL_type,type,
dsetconstrEL: $o ).
thf(dsetconstrEL,definition,
( dsetconstrEL
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionE_type,type,
binunionE: $o ).
thf(binunionE,definition,
( binunionE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binunion @ A @ B ) )
=> ( ( in @ Xx @ A )
| ( in @ Xx @ B ) ) ) ) ) ).
thf(symdiff_type,type,
symdiff: $i > $i > $i ).
thf(symdiff,definition,
( symdiff
= ( ^ [A: $i,B: $i] :
( dsetconstr @ ( binunion @ A @ B )
@ ^ [Xx: $i] :
( ~ ( in @ Xx @ A )
| ~ ( in @ Xx @ B ) ) ) ) ) ).
thf(symdiffE,conjecture,
( dsetconstrEL
=> ( dsetconstrER
=> ( binunionE
=> ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( symdiff @ A @ B ) )
=> ! [Xphi: $o] :
( ( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> Xphi ) )
=> ( ( ~ ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> Xphi ) )
=> Xphi ) ) ) ) ) ) ).
%------------------------------------------------------------------------------