TPTP Problem File: SEU600^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU600^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Ops on Sets - Unions and Intersections
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! C:i.binintersect A (binunion B C) = binunion
% (binintersect A B) (binintersect A C))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC102l [Bro08]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.70 v8.2.0, 0.85 v8.1.0, 0.91 v7.5.0, 0.86 v7.4.0, 0.56 v7.2.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.80 v5.2.0, 1.00 v3.7.0
% Syntax : Number of formulae : 21 ( 8 unt; 12 typ; 8 def)
% Number of atoms : 45 ( 10 equ; 0 cnn)
% Maximal formula atoms : 9 ( 5 avg)
% Number of connectives : 83 ( 0 ~; 0 |; 0 &; 60 @)
% ( 0 <=>; 23 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 13 ( 12 usr; 8 con; 0-2 aty)
% Number of variables : 27 ( 0 ^; 27 !; 0 ?; 27 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=266
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunionIL_type,type,
binunionIL: $o ).
thf(binunionIL,definition,
( binunionIL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ ( binunion @ A @ B ) ) ) ) ) ).
thf(binunionIR_type,type,
binunionIR: $o ).
thf(binunionIR,definition,
( binunionIR
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ ( binunion @ A @ B ) ) ) ) ) ).
thf(binunionEcases_type,type,
binunionEcases: $o ).
thf(binunionEcases,definition,
( binunionEcases
= ( ! [A: $i,B: $i,Xx: $i,Xphi: $o] :
( ( in @ Xx @ ( binunion @ A @ B ) )
=> ( ( ( in @ Xx @ A )
=> Xphi )
=> ( ( ( in @ Xx @ B )
=> Xphi )
=> Xphi ) ) ) ) ) ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersectI_type,type,
binintersectI: $o ).
thf(binintersectI,definition,
( binintersectI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ ( binintersect @ A @ B ) ) ) ) ) ) ).
thf(binintersectEL_type,type,
binintersectEL: $o ).
thf(binintersectEL,definition,
( binintersectEL
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(binintersectER_type,type,
binintersectER: $o ).
thf(binintersectER,definition,
( binintersectER
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ ( binintersect @ A @ B ) )
=> ( in @ Xx @ B ) ) ) ) ).
thf(bs114d,conjecture,
( subsetI1
=> ( setextsub
=> ( binunionIL
=> ( binunionIR
=> ( binunionEcases
=> ( binintersectI
=> ( binintersectEL
=> ( binintersectER
=> ! [A: $i,B: $i,C: $i] :
( ( binintersect @ A @ ( binunion @ B @ C ) )
= ( binunion @ ( binintersect @ A @ B ) @ ( binintersect @ A @ C ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------