TPTP Problem File: SEU593^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU593^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Ops on Sets - Unions and Intersections
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.subset A B -> binintersect A B = A)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC095l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v3.7.0
% Syntax : Number of formulae : 16 ( 6 unt; 9 typ; 6 def)
% Number of atoms : 32 ( 8 equ; 0 cnn)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 50 ( 0 ~; 0 |; 0 &; 36 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 5 con; 0-2 aty)
% Number of variables : 18 ( 3 ^; 15 !; 0 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=363
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(binintersect_type,type,
binintersect: $i > $i > $i ).
thf(binintersect,definition,
( binintersect
= ( ^ [A: $i,B: $i] :
( dsetconstr @ A
@ ^ [Xx: $i] : ( in @ Xx @ B ) ) ) ) ).
thf(binintersectI_type,type,
binintersectI: $o ).
thf(binintersectI,definition,
( binintersectI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ ( binintersect @ A @ B ) ) ) ) ) ) ).
thf(binintersectLsub_type,type,
binintersectLsub: $o ).
thf(binintersectLsub,definition,
( binintersectLsub
= ( ! [A: $i,B: $i] : ( subset @ ( binintersect @ A @ B ) @ A ) ) ) ).
thf(binintersectSubset2,conjecture,
( subsetI1
=> ( subsetE
=> ( setextsub
=> ( binintersectI
=> ( binintersectLsub
=> ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( binintersect @ A @ B )
= A ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------