TPTP Problem File: SEU585^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU585^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Ops on Sets - Unions and Intersections
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.! phi:o.in x (binunion A B) ->
% (in x A -> phi) -> (in x B -> phi) -> phi)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC087l [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.20 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.67 v3.7.0
% Syntax : Number of formulae : 13 ( 4 unt; 8 typ; 4 def)
% Number of atoms : 21 ( 6 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 48 ( 0 ~; 0 |; 0 &; 30 @)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 16 ( 2 ^; 14 !; 0 ?; 16 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=161
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(setadjoinE_type,type,
setadjoinE: $o ).
thf(setadjoinE,definition,
( setadjoinE
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
=> ! [Xphi: $o] :
( ( ( Xy = Xx )
=> Xphi )
=> ( ( ( in @ Xy @ A )
=> Xphi )
=> Xphi ) ) ) ) ) ).
thf(setunionE_type,type,
setunionE: $o ).
thf(setunionE,definition,
( setunionE
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
=> ! [Xphi: $o] :
( ! [B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> Xphi ) )
=> Xphi ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(binunion_type,type,
binunion: $i > $i > $i ).
thf(binunion,definition,
( binunion
= ( ^ [Xx: $i,Xy: $i] : ( setunion @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(binunionEcases,conjecture,
( setadjoinE
=> ( setunionE
=> ( uniqinunit
=> ! [A: $i,B: $i,Xx: $i,Xphi: $o] :
( ( in @ Xx @ ( binunion @ A @ B ) )
=> ( ( ( in @ Xx @ A )
=> Xphi )
=> ( ( ( in @ Xx @ B )
=> Xphi )
=> Xphi ) ) ) ) ) ) ).
%------------------------------------------------------------------------------