TPTP Problem File: SEU579^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU579^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Relations on Sets - Subsets
% Version : Especial.
% English : (! A:i.! B:i.subset A B -> subset (powerset A) (powerset B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC081g [Bro08]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.71 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 0.86 v6.0.0, 0.71 v5.5.0, 0.83 v5.4.0, 0.80 v5.2.0, 0.60 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 208 ( 97 unt; 110 typ; 97 def)
% Number of atoms : 527 ( 146 equ; 0 cnn)
% Maximal formula atoms : 97 ( 5 avg)
% Number of connectives : 824 ( 29 ~; 5 |; 27 &; 510 @)
% ( 14 <=>; 239 =>; 0 <=; 0 <~>)
% Maximal formula depth : 102 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 53 ( 53 >; 0 *; 0 +; 0 <<)
% Number of symbols : 113 ( 110 usr; 99 con; 0-2 aty)
% Number of variables : 288 ( 28 ^; 232 !; 28 ?; 288 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=156
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(exu_type,type,
exu: ( $i > $o ) > $o ).
thf(exu,definition,
( exu
= ( ^ [Xphi: $i > $o] :
? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ).
thf(setextAx_type,type,
setextAx: $o ).
thf(setextAx,definition,
( setextAx
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
<=> ( in @ Xx @ B ) )
=> ( A = B ) ) ) ) ).
thf(emptyset_type,type,
emptyset: $i ).
thf(emptysetAx_type,type,
emptysetAx: $o ).
thf(emptysetAx,definition,
( emptysetAx
= ( ! [Xx: $i] :
~ ( in @ Xx @ emptyset ) ) ) ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setadjoinAx_type,type,
setadjoinAx: $o ).
thf(setadjoinAx,definition,
( setadjoinAx
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
<=> ( ( Xy = Xx )
| ( in @ Xy @ A ) ) ) ) ) ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(powersetAx_type,type,
powersetAx: $o ).
thf(powersetAx,definition,
( powersetAx
= ( ! [A: $i,B: $i] :
( ( in @ B @ ( powerset @ A ) )
<=> ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(setunionAx_type,type,
setunionAx: $o ).
thf(setunionAx,definition,
( setunionAx
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
<=> ? [B: $i] :
( ( in @ Xx @ B )
& ( in @ B @ A ) ) ) ) ) ).
thf(omega_type,type,
omega: $i ).
thf(omega0Ax_type,type,
omega0Ax: $o ).
thf(omega0Ax,definition,
( omega0Ax
= ( in @ emptyset @ omega ) ) ).
thf(omegaSAx_type,type,
omegaSAx: $o ).
thf(omegaSAx,definition,
( omegaSAx
= ( ! [Xx: $i] :
( ( in @ Xx @ omega )
=> ( in @ ( setadjoin @ Xx @ Xx ) @ omega ) ) ) ) ).
thf(omegaIndAx_type,type,
omegaIndAx: $o ).
thf(omegaIndAx,definition,
( omegaIndAx
= ( ! [A: $i] :
( ( ( in @ emptyset @ A )
& ! [Xx: $i] :
( ( ( in @ Xx @ omega )
& ( in @ Xx @ A ) )
=> ( in @ ( setadjoin @ Xx @ Xx ) @ A ) ) )
=> ! [Xx: $i] :
( ( in @ Xx @ omega )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(replAx_type,type,
replAx: $o ).
thf(replAx,definition,
( replAx
= ( ! [Xphi: $i > $i > $o,A: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( exu
@ ^ [Xy: $i] : ( Xphi @ Xx @ Xy ) ) )
=> ? [B: $i] :
! [Xx: $i] :
( ( in @ Xx @ B )
<=> ? [Xy: $i] :
( ( in @ Xy @ A )
& ( Xphi @ Xy @ Xx ) ) ) ) ) ) ).
thf(foundationAx_type,type,
foundationAx: $o ).
thf(foundationAx,definition,
( foundationAx
= ( ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ? [B: $i] :
( ( in @ B @ A )
& ~ ? [Xx: $i] :
( ( in @ Xx @ B )
& ( in @ Xx @ A ) ) ) ) ) ) ).
thf(wellorderingAx_type,type,
wellorderingAx: $o ).
thf(wellorderingAx,definition,
( wellorderingAx
= ( ! [A: $i] :
? [B: $i] :
( ! [C: $i] :
( ( in @ C @ B )
=> ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ A ) ) )
& ! [Xx: $i,Xy: $i] :
( ( ( in @ Xx @ A )
& ( in @ Xy @ A ) )
=> ( ! [C: $i] :
( ( in @ C @ B )
=> ( ( in @ Xx @ C )
<=> ( in @ Xy @ C ) ) )
=> ( Xx = Xy ) ) )
& ! [C: $i,D: $i] :
( ( ( in @ C @ B )
& ( in @ D @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ D ) )
| ! [Xx: $i] :
( ( in @ Xx @ D )
=> ( in @ Xx @ C ) ) ) )
& ! [C: $i] :
( ( ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ A ) )
& ? [Xx: $i] : ( in @ Xx @ C ) )
=> ? [D: $i,Xx: $i] :
( ( in @ D @ B )
& ( in @ Xx @ C )
& ~ ? [Xy: $i] :
( ( in @ Xy @ D )
& ( in @ Xy @ C ) )
& ! [E: $i] :
( ( in @ E @ B )
=> ( ! [Xy: $i] :
( ( in @ Xy @ E )
=> ( in @ Xy @ D ) )
| ( in @ Xx @ E ) ) ) ) ) ) ) ) ).
thf(descr_type,type,
descr: ( $i > $o ) > $i ).
thf(descrp_type,type,
descrp: $o ).
thf(descrp,definition,
( descrp
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ( Xphi
@ ( descr
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ) ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(dsetconstrEL_type,type,
dsetconstrEL: $o ).
thf(dsetconstrEL,definition,
( dsetconstrEL
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(exuE1_type,type,
exuE1: $o ).
thf(exuE1,definition,
( exuE1
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ) ).
thf(prop2set_type,type,
prop2set: $o > $i ).
thf(prop2setE_type,type,
prop2setE: $o ).
thf(prop2setE,definition,
( prop2setE
= ( ! [Xphi: $o,Xx: $i] :
( ( in @ Xx @ ( prop2set @ Xphi ) )
=> Xphi ) ) ) ).
thf(emptysetE_type,type,
emptysetE: $o ).
thf(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> ! [Xphi: $o] : Xphi ) ) ) ).
thf(emptysetimpfalse_type,type,
emptysetimpfalse: $o ).
thf(emptysetimpfalse,definition,
( emptysetimpfalse
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> $false ) ) ) ).
thf(notinemptyset_type,type,
notinemptyset: $o ).
thf(notinemptyset,definition,
( notinemptyset
= ( ! [Xx: $i] :
~ ( in @ Xx @ emptyset ) ) ) ).
thf(exuE3e_type,type,
exuE3e: $o ).
thf(exuE3e,definition,
( exuE3e
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] : ( Xphi @ Xx ) ) ) ) ).
thf(setext_type,type,
setext: $o ).
thf(setext,definition,
( setext
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( A = B ) ) ) ) ) ).
thf(emptyI_type,type,
emptyI: $o ).
thf(emptyI,definition,
( emptyI
= ( ! [A: $i] :
( ! [Xx: $i] :
~ ( in @ Xx @ A )
=> ( A = emptyset ) ) ) ) ).
thf(noeltsimpempty_type,type,
noeltsimpempty: $o ).
thf(noeltsimpempty,definition,
( noeltsimpempty
= ( ! [A: $i] :
( ! [Xx: $i] :
~ ( in @ Xx @ A )
=> ( A = emptyset ) ) ) ) ).
thf(setbeta_type,type,
setbeta: $o ).
thf(setbeta,definition,
( setbeta
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
<=> ( Xphi @ Xx ) ) ) ) ) ).
thf(nonempty_type,type,
nonempty: $i > $o ).
thf(nonempty,definition,
( nonempty
= ( ^ [Xx: $i] : ( Xx != emptyset ) ) ) ).
thf(nonemptyE1_type,type,
nonemptyE1: $o ).
thf(nonemptyE1,definition,
( nonemptyE1
= ( ! [A: $i] :
( ( nonempty @ A )
=> ? [Xx: $i] : ( in @ Xx @ A ) ) ) ) ).
thf(nonemptyI_type,type,
nonemptyI: $o ).
thf(nonemptyI,definition,
( nonemptyI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( nonempty
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(nonemptyI1_type,type,
nonemptyI1: $o ).
thf(nonemptyI1,definition,
( nonemptyI1
= ( ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ( nonempty @ A ) ) ) ) ).
thf(setadjoinIL_type,type,
setadjoinIL: $o ).
thf(setadjoinIL,definition,
( setadjoinIL
= ( ! [Xx: $i,Xy: $i] : ( in @ Xx @ ( setadjoin @ Xx @ Xy ) ) ) ) ).
thf(emptyinunitempty_type,type,
emptyinunitempty: $o ).
thf(emptyinunitempty,definition,
( emptyinunitempty
= ( in @ emptyset @ ( setadjoin @ emptyset @ emptyset ) ) ) ).
thf(setadjoinIR_type,type,
setadjoinIR: $o ).
thf(setadjoinIR,definition,
( setadjoinIR
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ A )
=> ( in @ Xy @ ( setadjoin @ Xx @ A ) ) ) ) ) ).
thf(setadjoinE_type,type,
setadjoinE: $o ).
thf(setadjoinE,definition,
( setadjoinE
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
=> ! [Xphi: $o] :
( ( ( Xy = Xx )
=> Xphi )
=> ( ( ( in @ Xy @ A )
=> Xphi )
=> Xphi ) ) ) ) ) ).
thf(setadjoinOr_type,type,
setadjoinOr: $o ).
thf(setadjoinOr,definition,
( setadjoinOr
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
=> ( ( Xy = Xx )
| ( in @ Xy @ A ) ) ) ) ) ).
thf(setoftrueEq_type,type,
setoftrueEq: $o ).
thf(setoftrueEq,definition,
( setoftrueEq
= ( ! [A: $i] :
( ( dsetconstr @ A
@ ^ [Xx: $i] : $true )
= A ) ) ) ).
thf(powersetI_type,type,
powersetI: $o ).
thf(powersetI,definition,
( powersetI
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( in @ B @ ( powerset @ A ) ) ) ) ) ).
thf(emptyinPowerset_type,type,
emptyinPowerset: $o ).
thf(emptyinPowerset,definition,
( emptyinPowerset
= ( ! [A: $i] : ( in @ emptyset @ ( powerset @ A ) ) ) ) ).
thf(emptyInPowerset_type,type,
emptyInPowerset: $o ).
thf(emptyInPowerset,definition,
( emptyInPowerset
= ( ! [A: $i] : ( in @ emptyset @ ( powerset @ A ) ) ) ) ).
thf(powersetE_type,type,
powersetE: $o ).
thf(powersetE,definition,
( powersetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ B @ ( powerset @ A ) )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(setunionI_type,type,
setunionI: $o ).
thf(setunionI,definition,
( setunionI
= ( ! [A: $i,Xx: $i,B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> ( in @ Xx @ ( setunion @ A ) ) ) ) ) ) ).
thf(setunionE_type,type,
setunionE: $o ).
thf(setunionE,definition,
( setunionE
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
=> ! [Xphi: $o] :
( ! [B: $i] :
( ( in @ Xx @ B )
=> ( ( in @ B @ A )
=> Xphi ) )
=> Xphi ) ) ) ) ).
thf(subPowSU_type,type,
subPowSU: $o ).
thf(subPowSU,definition,
( subPowSU
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ ( powerset @ ( setunion @ A ) ) ) ) ) ) ).
thf(exuE2_type,type,
exuE2: $o ).
thf(exuE2,definition,
( exuE2
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] :
! [Xy: $i] :
( ( Xphi @ Xy )
<=> ( Xy = Xx ) ) ) ) ) ).
thf(nonemptyImpWitness_type,type,
nonemptyImpWitness: $o ).
thf(nonemptyImpWitness,definition,
( nonemptyImpWitness
= ( ! [A: $i] :
( ( nonempty @ A )
=> ? [Xx: $i] :
( ( in @ Xx @ A )
& $true ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(notinsingleton_type,type,
notinsingleton: $o ).
thf(notinsingleton,definition,
( notinsingleton
= ( ! [Xx: $i,Xy: $i] :
( ( Xx != Xy )
=> ~ ( in @ Xy @ ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(eqinunit_type,type,
eqinunit: $o ).
thf(eqinunit,definition,
( eqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(singletonsswitch_type,type,
singletonsswitch: $o ).
thf(singletonsswitch,definition,
( singletonsswitch
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( in @ Xy @ ( setadjoin @ Xx @ emptyset ) ) ) ) ) ).
thf(upairsetE_type,type,
upairsetE: $o ).
thf(upairsetE,definition,
( upairsetE
= ( ! [Xx: $i,Xy: $i,Xz: $i] :
( ( in @ Xz @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) )
=> ( ( Xz = Xx )
| ( Xz = Xy ) ) ) ) ) ).
thf(upairsetIL_type,type,
upairsetIL: $o ).
thf(upairsetIL,definition,
( upairsetIL
= ( ! [Xx: $i,Xy: $i] : ( in @ Xx @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(upairsetIR_type,type,
upairsetIR: $o ).
thf(upairsetIR,definition,
( upairsetIR
= ( ! [Xx: $i,Xy: $i] : ( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ).
thf(emptyE1_type,type,
emptyE1: $o ).
thf(emptyE1,definition,
( emptyE1
= ( ! [A: $i,Xphi: $i > $o] :
( ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ( ( ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
= emptyset )
=> $false ) ) ) ) ).
thf(vacuousDall_type,type,
vacuousDall: $o ).
thf(vacuousDall,definition,
( vacuousDall
= ( ! [Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ emptyset )
=> ( Xphi @ Xx ) ) ) ) ).
thf(quantDeMorgan1_type,type,
quantDeMorgan1: $o ).
thf(quantDeMorgan1,definition,
( quantDeMorgan1
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( Xphi @ Xx ) )
=> ? [Xx: $i] :
( ( in @ Xx @ A )
& ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(quantDeMorgan2_type,type,
quantDeMorgan2: $o ).
thf(quantDeMorgan2,definition,
( quantDeMorgan2
= ( ! [A: $i,Xphi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ~ ( Xphi @ Xx ) )
=> ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) ) ) ) ) ).
thf(quantDeMorgan3_type,type,
quantDeMorgan3: $o ).
thf(quantDeMorgan3,definition,
( quantDeMorgan3
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(quantDeMorgan4_type,type,
quantDeMorgan4: $o ).
thf(quantDeMorgan4,definition,
( quantDeMorgan4
= ( ! [A: $i,Xphi: $i > $o] :
( ? [Xx: $i] :
( ( in @ Xx @ A )
& ~ ( Xphi @ Xx ) )
=> ~ ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( Xphi @ Xx ) ) ) ) ) ).
thf(prop2setI_type,type,
prop2setI: $o ).
thf(prop2setI,definition,
( prop2setI
= ( ! [Xphi: $o] :
( Xphi
=> ( in @ emptyset @ ( prop2set @ Xphi ) ) ) ) ) ).
thf(set2prop_type,type,
set2prop: $i > $o ).
thf(prop2set2propI_type,type,
prop2set2propI: $o ).
thf(prop2set2propI,definition,
( prop2set2propI
= ( ! [Xphi: $o] :
( Xphi
=> ( set2prop @ ( prop2set @ Xphi ) ) ) ) ) ).
thf(notdexE_type,type,
notdexE: $o ).
thf(notdexE,definition,
( notdexE
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ? [Xx: $i] :
( ( in @ Xx @ A )
& ( Xphi @ Xx ) )
=> ! [Xx: $i] :
( ( in @ Xx @ A )
=> ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(notdallE_type,type,
notdallE: $o ).
thf(notdallE,definition,
( notdallE
= ( ! [A: $i,Xphi: $i > $o] :
( ~ ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( Xphi @ Xx ) )
=> ? [Xx: $i] :
( ( in @ Xx @ A )
& ~ ( Xphi @ Xx ) ) ) ) ) ).
thf(exuI1_type,type,
exuI1: $o ).
thf(exuI1,definition,
( exuI1
= ( ! [Xphi: $i > $o] :
( ? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(exuI3_type,type,
exuI3: $o ).
thf(exuI3,definition,
( exuI3
= ( ! [Xphi: $i > $o] :
( ? [Xx: $i] : ( Xphi @ Xx )
=> ( ! [Xx: $i,Xy: $i] :
( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ) ).
thf(exuI2_type,type,
exuI2: $o ).
thf(exuI2,definition,
( exuI2
= ( ! [Xphi: $i > $o] :
( ? [Xx: $i] :
! [Xy: $i] :
( ( Xphi @ Xy )
<=> ( Xy = Xx ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(inCongP_type,type,
inCongP: $o ).
thf(inCongP,definition,
( inCongP
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
=> ( in @ Xy @ B ) ) ) ) ) ) ).
thf(in__Cong_type,type,
in__Cong: $o ).
thf(in__Cong,definition,
( in__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
<=> ( in @ Xy @ B ) ) ) ) ) ) ).
thf(exuE3u_type,type,
exuE3u: $o ).
thf(exuE3u,definition,
( exuE3u
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ! [Xx: $i,Xy: $i] :
( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ) ).
thf(exu__Cong_type,type,
exu__Cong: $o ).
thf(exu__Cong,definition,
( exu__Cong
= ( ! [Xphi: $i > $o,Xpsi: $i > $o] :
( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( Xphi @ Xx )
<=> ( Xpsi @ Xy ) ) )
=> ( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
<=> ( exu
@ ^ [Xx: $i] : ( Xpsi @ Xx ) ) ) ) ) ) ).
thf(emptyset__Cong_type,type,
emptyset__Cong: $o ).
thf(emptyset__Cong,definition,
( emptyset__Cong
= ( emptyset = emptyset ) ) ).
thf(setadjoin__Cong_type,type,
setadjoin__Cong: $o ).
thf(setadjoin__Cong,definition,
( setadjoin__Cong
= ( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ! [Xz: $i,Xu: $i] :
( ( Xz = Xu )
=> ( ( setadjoin @ Xx @ Xz )
= ( setadjoin @ Xy @ Xu ) ) ) ) ) ) ).
thf(powerset__Cong_type,type,
powerset__Cong: $o ).
thf(powerset__Cong,definition,
( powerset__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( ( powerset @ A )
= ( powerset @ B ) ) ) ) ) ).
thf(setunion__Cong_type,type,
setunion__Cong: $o ).
thf(setunion__Cong,definition,
( setunion__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( ( setunion @ A )
= ( setunion @ B ) ) ) ) ) ).
thf(omega__Cong_type,type,
omega__Cong: $o ).
thf(omega__Cong,definition,
( omega__Cong
= ( omega = omega ) ) ).
thf(exuEu_type,type,
exuEu: $o ).
thf(exuEu,definition,
( exuEu
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ! [Xx: $i,Xy: $i] :
( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ) ).
thf(descr__Cong_type,type,
descr__Cong: $o ).
thf(descr__Cong,definition,
( descr__Cong
= ( ! [Xphi: $i > $o,Xpsi: $i > $o] :
( ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( Xphi @ Xx )
<=> ( Xpsi @ Xy ) ) )
=> ( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ( ( exu
@ ^ [Xx: $i] : ( Xpsi @ Xx ) )
=> ( ( descr
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
= ( descr
@ ^ [Xx: $i] : ( Xpsi @ Xx ) ) ) ) ) ) ) ) ).
thf(dsetconstr__Cong_type,type,
dsetconstr__Cong: $o ).
thf(dsetconstr__Cong,definition,
( dsetconstr__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xphi: $i > $o,Xpsi: $i > $o] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ B )
=> ( ( Xx = Xy )
=> ( ( Xphi @ Xx )
<=> ( Xpsi @ Xy ) ) ) ) )
=> ( ( dsetconstr @ A
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
= ( dsetconstr @ B
@ ^ [Xx: $i] : ( Xpsi @ Xx ) ) ) ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(disjoint_type,type,
disjoint: $i > $i > $o ).
thf(setsmeet_type,type,
setsmeet: $i > $i > $o ).
thf(subsetI1_type,type,
subsetI1: $o ).
thf(subsetI1,definition,
( subsetI1
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(eqimpsubset2_type,type,
eqimpsubset2: $o ).
thf(eqimpsubset2,definition,
( eqimpsubset2
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( subset @ B @ A ) ) ) ) ).
thf(eqimpsubset1_type,type,
eqimpsubset1: $o ).
thf(eqimpsubset1,definition,
( eqimpsubset1
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(emptysetsubset_type,type,
emptysetsubset: $o ).
thf(emptysetsubset,definition,
( emptysetsubset
= ( ! [A: $i] : ( subset @ emptyset @ A ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(subsetE2_type,type,
subsetE2: $o ).
thf(subsetE2,definition,
( subsetE2
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ~ ( in @ Xx @ B )
=> ~ ( in @ Xx @ A ) ) ) ) ) ).
thf(notsubsetI_type,type,
notsubsetI: $o ).
thf(notsubsetI,definition,
( notsubsetI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ~ ( subset @ A @ B ) ) ) ) ) ).
thf(notequalI1_type,type,
notequalI1: $o ).
thf(notequalI1,definition,
( notequalI1
= ( ! [A: $i,B: $i] :
( ~ ( subset @ A @ B )
=> ( A != B ) ) ) ) ).
thf(notequalI2_type,type,
notequalI2: $o ).
thf(notequalI2,definition,
( notequalI2
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( A != B ) ) ) ) ) ).
thf(subsetRefl_type,type,
subsetRefl: $o ).
thf(subsetRefl,definition,
( subsetRefl
= ( ! [A: $i] : ( subset @ A @ A ) ) ) ).
thf(subsetTrans_type,type,
subsetTrans: $o ).
thf(subsetTrans,definition,
( subsetTrans
= ( ! [A: $i,B: $i,C: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ C )
=> ( subset @ A @ C ) ) ) ) ) ).
thf(setadjoinSub_type,type,
setadjoinSub: $o ).
thf(setadjoinSub,definition,
( setadjoinSub
= ( ! [Xx: $i,A: $i] : ( subset @ A @ ( setadjoin @ Xx @ A ) ) ) ) ).
thf(setadjoinSub2_type,type,
setadjoinSub2: $o ).
thf(setadjoinSub2,definition,
( setadjoinSub2
= ( ! [A: $i,Xx: $i,B: $i] :
( ( subset @ A @ B )
=> ( subset @ A @ ( setadjoin @ Xx @ B ) ) ) ) ) ).
thf(subset2powerset_type,type,
subset2powerset: $o ).
thf(subset2powerset,definition,
( subset2powerset
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( in @ A @ ( powerset @ B ) ) ) ) ) ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(subsetemptysetimpeq_type,type,
subsetemptysetimpeq: $o ).
thf(subsetemptysetimpeq,definition,
( subsetemptysetimpeq
= ( ! [A: $i] :
( ( subset @ A @ emptyset )
=> ( A = emptyset ) ) ) ) ).
thf(powersetI1_type,type,
powersetI1: $o ).
thf(powersetI1,definition,
( powersetI1
= ( ! [A: $i,B: $i] :
( ( subset @ B @ A )
=> ( in @ B @ ( powerset @ A ) ) ) ) ) ).
thf(powersetE1_type,type,
powersetE1: $o ).
thf(powersetE1,definition,
( powersetE1
= ( ! [A: $i,B: $i] :
( ( in @ B @ ( powerset @ A ) )
=> ( subset @ B @ A ) ) ) ) ).
thf(inPowerset_type,type,
inPowerset: $o ).
thf(inPowerset,definition,
( inPowerset
= ( ! [A: $i] : ( in @ A @ ( powerset @ A ) ) ) ) ).
thf(powersetsubset,conjecture,
( setextAx
=> ( emptysetAx
=> ( setadjoinAx
=> ( powersetAx
=> ( setunionAx
=> ( omega0Ax
=> ( omegaSAx
=> ( omegaIndAx
=> ( replAx
=> ( foundationAx
=> ( wellorderingAx
=> ( descrp
=> ( dsetconstrI
=> ( dsetconstrEL
=> ( dsetconstrER
=> ( exuE1
=> ( prop2setE
=> ( emptysetE
=> ( emptysetimpfalse
=> ( notinemptyset
=> ( exuE3e
=> ( setext
=> ( emptyI
=> ( noeltsimpempty
=> ( setbeta
=> ( nonemptyE1
=> ( nonemptyI
=> ( nonemptyI1
=> ( setadjoinIL
=> ( emptyinunitempty
=> ( setadjoinIR
=> ( setadjoinE
=> ( setadjoinOr
=> ( setoftrueEq
=> ( powersetI
=> ( emptyinPowerset
=> ( emptyInPowerset
=> ( powersetE
=> ( setunionI
=> ( setunionE
=> ( subPowSU
=> ( exuE2
=> ( nonemptyImpWitness
=> ( uniqinunit
=> ( notinsingleton
=> ( eqinunit
=> ( singletonsswitch
=> ( upairsetE
=> ( upairsetIL
=> ( upairsetIR
=> ( emptyE1
=> ( vacuousDall
=> ( quantDeMorgan1
=> ( quantDeMorgan2
=> ( quantDeMorgan3
=> ( quantDeMorgan4
=> ( prop2setI
=> ( prop2set2propI
=> ( notdexE
=> ( notdallE
=> ( exuI1
=> ( exuI3
=> ( exuI2
=> ( inCongP
=> ( in__Cong
=> ( exuE3u
=> ( exu__Cong
=> ( emptyset__Cong
=> ( setadjoin__Cong
=> ( powerset__Cong
=> ( setunion__Cong
=> ( omega__Cong
=> ( exuEu
=> ( descr__Cong
=> ( dsetconstr__Cong
=> ( subsetI1
=> ( eqimpsubset2
=> ( eqimpsubset1
=> ( subsetI2
=> ( emptysetsubset
=> ( subsetE
=> ( subsetE2
=> ( notsubsetI
=> ( notequalI1
=> ( notequalI2
=> ( subsetRefl
=> ( subsetTrans
=> ( setadjoinSub
=> ( setadjoinSub2
=> ( subset2powerset
=> ( setextsub
=> ( subsetemptysetimpeq
=> ( powersetI1
=> ( powersetE1
=> ( inPowerset
=> ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( subset @ ( powerset @ A ) @ ( powerset @ B ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------