TPTP Problem File: SEU506^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU506^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Basic Laws of Logic
% Version : Especial.
% English : (! A:i.(! x:i.~(in x A)) -> A = emptyset)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC008g [Bro08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.67 v4.0.1, 1.00 v3.7.0
% Syntax : Number of formulae : 57 ( 24 unt; 32 typ; 24 def)
% Number of atoms : 147 ( 31 equ; 0 cnn)
% Maximal formula atoms : 24 ( 5 avg)
% Number of connectives : 266 ( 5 ~; 3 |; 18 &; 174 @)
% ( 6 <=>; 60 =>; 0 <=; 0 <~>)
% Maximal formula depth : 29 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 23 ( 23 >; 0 *; 0 +; 0 <<)
% Number of symbols : 34 ( 32 usr; 25 con; 0-2 aty)
% Number of variables : 86 ( 11 ^; 61 !; 14 ?; 86 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=386
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(exu_type,type,
exu: ( $i > $o ) > $o ).
thf(exu,definition,
( exu
= ( ^ [Xphi: $i > $o] :
? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ).
thf(setextAx_type,type,
setextAx: $o ).
thf(setextAx,definition,
( setextAx
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
<=> ( in @ Xx @ B ) )
=> ( A = B ) ) ) ) ).
thf(emptyset_type,type,
emptyset: $i ).
thf(emptysetAx_type,type,
emptysetAx: $o ).
thf(emptysetAx,definition,
( emptysetAx
= ( ! [Xx: $i] :
~ ( in @ Xx @ emptyset ) ) ) ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setadjoinAx_type,type,
setadjoinAx: $o ).
thf(setadjoinAx,definition,
( setadjoinAx
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
<=> ( ( Xy = Xx )
| ( in @ Xy @ A ) ) ) ) ) ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(powersetAx_type,type,
powersetAx: $o ).
thf(powersetAx,definition,
( powersetAx
= ( ! [A: $i,B: $i] :
( ( in @ B @ ( powerset @ A ) )
<=> ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(setunion_type,type,
setunion: $i > $i ).
thf(setunionAx_type,type,
setunionAx: $o ).
thf(setunionAx,definition,
( setunionAx
= ( ! [A: $i,Xx: $i] :
( ( in @ Xx @ ( setunion @ A ) )
<=> ? [B: $i] :
( ( in @ Xx @ B )
& ( in @ B @ A ) ) ) ) ) ).
thf(omega_type,type,
omega: $i ).
thf(omega0Ax_type,type,
omega0Ax: $o ).
thf(omega0Ax,definition,
( omega0Ax
= ( in @ emptyset @ omega ) ) ).
thf(omegaSAx_type,type,
omegaSAx: $o ).
thf(omegaSAx,definition,
( omegaSAx
= ( ! [Xx: $i] :
( ( in @ Xx @ omega )
=> ( in @ ( setadjoin @ Xx @ Xx ) @ omega ) ) ) ) ).
thf(omegaIndAx_type,type,
omegaIndAx: $o ).
thf(omegaIndAx,definition,
( omegaIndAx
= ( ! [A: $i] :
( ( ( in @ emptyset @ A )
& ! [Xx: $i] :
( ( ( in @ Xx @ omega )
& ( in @ Xx @ A ) )
=> ( in @ ( setadjoin @ Xx @ Xx ) @ A ) ) )
=> ! [Xx: $i] :
( ( in @ Xx @ omega )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(replAx_type,type,
replAx: $o ).
thf(replAx,definition,
( replAx
= ( ! [Xphi: $i > $i > $o,A: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( exu
@ ^ [Xy: $i] : ( Xphi @ Xx @ Xy ) ) )
=> ? [B: $i] :
! [Xx: $i] :
( ( in @ Xx @ B )
<=> ? [Xy: $i] :
( ( in @ Xy @ A )
& ( Xphi @ Xy @ Xx ) ) ) ) ) ) ).
thf(foundationAx_type,type,
foundationAx: $o ).
thf(foundationAx,definition,
( foundationAx
= ( ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ? [B: $i] :
( ( in @ B @ A )
& ~ ? [Xx: $i] :
( ( in @ Xx @ B )
& ( in @ Xx @ A ) ) ) ) ) ) ).
thf(wellorderingAx_type,type,
wellorderingAx: $o ).
thf(wellorderingAx,definition,
( wellorderingAx
= ( ! [A: $i] :
? [B: $i] :
( ! [C: $i] :
( ( in @ C @ B )
=> ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ A ) ) )
& ! [Xx: $i,Xy: $i] :
( ( ( in @ Xx @ A )
& ( in @ Xy @ A ) )
=> ( ! [C: $i] :
( ( in @ C @ B )
=> ( ( in @ Xx @ C )
<=> ( in @ Xy @ C ) ) )
=> ( Xx = Xy ) ) )
& ! [C: $i,D: $i] :
( ( ( in @ C @ B )
& ( in @ D @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ D ) )
| ! [Xx: $i] :
( ( in @ Xx @ D )
=> ( in @ Xx @ C ) ) ) )
& ! [C: $i] :
( ( ! [Xx: $i] :
( ( in @ Xx @ C )
=> ( in @ Xx @ A ) )
& ? [Xx: $i] : ( in @ Xx @ C ) )
=> ? [D: $i,Xx: $i] :
( ( in @ D @ B )
& ( in @ Xx @ C )
& ~ ? [Xy: $i] :
( ( in @ Xy @ D )
& ( in @ Xy @ C ) )
& ! [E: $i] :
( ( in @ E @ B )
=> ( ! [Xy: $i] :
( ( in @ Xy @ E )
=> ( in @ Xy @ D ) )
| ( in @ Xx @ E ) ) ) ) ) ) ) ) ).
thf(descr_type,type,
descr: ( $i > $o ) > $i ).
thf(descrp_type,type,
descrp: $o ).
thf(descrp,definition,
( descrp
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ( Xphi
@ ( descr
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ) ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(dsetconstrEL_type,type,
dsetconstrEL: $o ).
thf(dsetconstrEL,definition,
( dsetconstrEL
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( in @ Xx @ A ) ) ) ) ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(exuE1_type,type,
exuE1: $o ).
thf(exuE1,definition,
( exuE1
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ) ).
thf(prop2set_type,type,
prop2set: $o > $i ).
thf(prop2set,definition,
( prop2set
= ( ^ [Xphi: $o] :
( dsetconstr @ ( powerset @ emptyset )
@ ^ [Xx: $i] : Xphi ) ) ) ).
thf(prop2setE_type,type,
prop2setE: $o ).
thf(prop2setE,definition,
( prop2setE
= ( ! [Xphi: $o,Xx: $i] :
( ( in @ Xx @ ( prop2set @ Xphi ) )
=> Xphi ) ) ) ).
thf(emptysetE_type,type,
emptysetE: $o ).
thf(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> ! [Xphi: $o] : Xphi ) ) ) ).
thf(emptysetimpfalse_type,type,
emptysetimpfalse: $o ).
thf(emptysetimpfalse,definition,
( emptysetimpfalse
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> $false ) ) ) ).
thf(notinemptyset_type,type,
notinemptyset: $o ).
thf(notinemptyset,definition,
( notinemptyset
= ( ! [Xx: $i] :
~ ( in @ Xx @ emptyset ) ) ) ).
thf(exuE3e_type,type,
exuE3e: $o ).
thf(exuE3e,definition,
( exuE3e
= ( ! [Xphi: $i > $o] :
( ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) )
=> ? [Xx: $i] : ( Xphi @ Xx ) ) ) ) ).
thf(setext_type,type,
setext: $o ).
thf(setext,definition,
( setext
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( A = B ) ) ) ) ) ).
thf(emptyI,conjecture,
( setextAx
=> ( emptysetAx
=> ( setadjoinAx
=> ( powersetAx
=> ( setunionAx
=> ( omega0Ax
=> ( omegaSAx
=> ( omegaIndAx
=> ( replAx
=> ( foundationAx
=> ( wellorderingAx
=> ( descrp
=> ( dsetconstrI
=> ( dsetconstrEL
=> ( dsetconstrER
=> ( exuE1
=> ( prop2setE
=> ( emptysetE
=> ( emptysetimpfalse
=> ( notinemptyset
=> ( exuE3e
=> ( setext
=> ! [A: $i] :
( ! [Xx: $i] :
~ ( in @ Xx @ A )
=> ( A = emptyset ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------