TPTP Problem File: SEU494^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU494^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory (Binary relations)
% Problem : Inverse of a strict (partial) order is a strict (partial) order
% Version : [Nei08] axioms.
% English :
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 59 ( 29 unt; 29 typ; 29 def)
% Number of atoms : 94 ( 33 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 162 ( 4 ~; 4 |; 12 &; 125 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 199 ( 199 >; 0 *; 0 +; 0 <<)
% Number of symbols : 32 ( 31 usr; 2 con; 0-3 aty)
% Number of variables : 87 ( 43 ^; 39 !; 5 ?; 87 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(inverse_of_strict_order_is_strict_order,conjecture,
! [R: $i > $i > $o] :
( ( so @ R )
=> ( so @ ( inv @ R ) ) ) ).
%------------------------------------------------------------------------------