TPTP Problem File: SEU469^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU469^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory (Binary relations)
% Problem : Transitive reflexive closure is transitive and reflexive
% Version : [Nei08] axioms.
% English : The transitive reflexive closure of a binary relation is
% transitive and reflexive.
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.67 v3.7.0
% Syntax : Number of formulae : 59 ( 29 unt; 29 typ; 29 def)
% Number of atoms : 95 ( 33 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 163 ( 4 ~; 4 |; 13 &; 126 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 199 ( 199 >; 0 *; 0 +; 0 <<)
% Number of symbols : 33 ( 32 usr; 3 con; 0-3 aty)
% Number of variables : 87 ( 43 ^; 39 !; 5 ?; 87 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(transitive_reflexive_closure_is_transitive_reflexive,conjecture,
! [R: $i > $i > $o] :
( ( trans @ ( trc @ R ) )
& ( refl @ ( trc @ R ) ) ) ).
%------------------------------------------------------------------------------