TPTP Problem File: SEU450+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU450+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Problem : First and Second Order Cutting of Binary Relations T64
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ret05] Retel (2005), Properties of First and Second Order Cut
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t64_relset_2 [Urb08]
% Status : Theorem
% Rating : 0.61 v9.0.0, 0.56 v8.2.0, 0.61 v8.1.0, 0.72 v7.5.0, 0.75 v7.4.0, 0.60 v7.3.0, 0.69 v7.2.0, 0.66 v7.1.0, 0.61 v7.0.0, 0.57 v6.4.0, 0.58 v6.3.0, 0.67 v6.2.0, 0.72 v6.1.0, 0.80 v6.0.0, 0.78 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.85 v5.2.0, 0.80 v5.1.0, 0.81 v5.0.0, 0.83 v4.1.0, 0.87 v4.0.0, 0.88 v3.7.0, 0.85 v3.5.0, 0.95 v3.4.0
% Syntax : Number of formulae : 57 ( 15 unt; 0 def)
% Number of atoms : 124 ( 12 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 79 ( 12 ~; 1 |; 25 &)
% ( 4 <=>; 37 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 13 ( 11 usr; 1 prp; 0-3 aty)
% Number of functors : 13 ( 13 usr; 1 con; 0-4 aty)
% Number of variables : 118 ( 108 !; 10 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t64_relset_2,conjecture,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(B))
=> ! [E] :
( m2_relset_1(E,A,B)
=> ( k8_relset_2(A,B,C,E) = k8_relset_2(A,B,k8_relset_2(B,A,k8_relset_2(A,B,C,E),k6_relset_1(A,B,E)),E)
& k8_relset_2(B,A,D,k6_relset_1(A,B,E)) = k8_relset_2(B,A,k8_relset_2(A,B,k8_relset_2(B,A,D,k6_relset_1(A,B,E)),E),k6_relset_1(A,B,E)) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_relat_1(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( r1_tarski(A,B)
& r1_tarski(B,A) ) ) ).
fof(d4_relset_2,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> k7_relset_2(A,B,C,D) = k8_setfam_1(B,k4_relset_2(k1_zfmisc_1(A),B,k6_relset_2(B,A,D),k3_pua2mss1(C))) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_pua2mss1,axiom,
! [A] : m1_eqrel_1(k3_pua2mss1(A),A) ).
fof(dt_k4_relat_1,axiom,
! [A] :
( v1_relat_1(A)
=> v1_relat_1(k4_relat_1(A)) ) ).
fof(dt_k4_relset_2,axiom,
! [A,B,C,D] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,k1_zfmisc_1(B))))
=> m1_subset_1(k4_relset_2(A,B,C,D),k1_zfmisc_1(k1_zfmisc_1(B))) ) ).
fof(dt_k5_relset_2,axiom,
! [A,B] :
( v1_relat_1(B)
=> ( v1_relat_1(k5_relset_2(A,B))
& v1_funct_1(k5_relset_2(A,B)) ) ) ).
fof(dt_k6_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> m2_relset_1(k6_relset_1(A,B,C),B,A) ) ).
fof(dt_k6_relset_2,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(B,A)))
=> ( v1_funct_1(k6_relset_2(A,B,C))
& v1_funct_2(k6_relset_2(A,B,C),k1_zfmisc_1(B),k1_zfmisc_1(A))
& m2_relset_1(k6_relset_2(A,B,C),k1_zfmisc_1(B),k1_zfmisc_1(A)) ) ) ).
fof(dt_k7_relset_2,axiom,
$true ).
fof(dt_k8_relset_2,axiom,
! [A,B,C,D] :
( ( m1_subset_1(C,k1_zfmisc_1(A))
& m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B))) )
=> m1_subset_1(k8_relset_2(A,B,C,D),k1_zfmisc_1(B)) ) ).
fof(dt_k8_setfam_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> m1_subset_1(k8_setfam_1(A,B),k1_zfmisc_1(A)) ) ).
fof(dt_k9_relat_1,axiom,
$true ).
fof(dt_m1_eqrel_1,axiom,
! [A,B] :
( m1_eqrel_1(B,A)
=> m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(existence_m1_eqrel_1,axiom,
! [A] :
? [B] : m1_eqrel_1(B,A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc11_relat_1,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_xboole_0(k4_relat_1(A))
& v1_relat_1(k4_relat_1(A)) ) ) ).
fof(fc12_relat_1,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_relat_1(k1_xboole_0)
& v3_relat_1(k1_xboole_0) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_sysrel,axiom,
! [A,B] : v1_relat_1(k2_zfmisc_1(A,B)) ).
fof(fc4_relat_1,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_relat_1(k1_xboole_0) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(involutiveness_k4_relat_1,axiom,
! [A] :
( v1_relat_1(A)
=> k4_relat_1(k4_relat_1(A)) = A ) ).
fof(involutiveness_k6_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> k6_relset_1(A,B,k6_relset_1(A,B,C)) = C ) ).
fof(rc1_relat_1,axiom,
? [A] :
( v1_xboole_0(A)
& v1_relat_1(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc2_partfun1,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_relat_1(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( v1_relat_1(A)
& v3_relat_1(A) ) ).
fof(redefinition_k4_relset_2,axiom,
! [A,B,C,D] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,k1_zfmisc_1(B))))
=> k4_relset_2(A,B,C,D) = k9_relat_1(C,D) ) ).
fof(redefinition_k6_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> k6_relset_1(A,B,C) = k4_relat_1(C) ) ).
fof(redefinition_k6_relset_2,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(B,A)))
=> k6_relset_2(A,B,C) = k5_relset_2(B,C) ) ).
fof(redefinition_k8_relset_2,axiom,
! [A,B,C,D] :
( ( m1_subset_1(C,k1_zfmisc_1(A))
& m1_subset_1(D,k1_zfmisc_1(k2_zfmisc_1(A,B))) )
=> k8_relset_2(A,B,C,D) = k7_relset_2(A,B,C,D) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t32_relset_2,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(A))
=> ! [E] :
( m1_subset_1(E,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> ( r1_tarski(C,D)
=> r1_tarski(k8_relset_2(A,B,D,E),k8_relset_2(A,B,C,E)) ) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t61_relset_2,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(B))
=> ! [E] :
( m2_relset_1(E,A,B)
=> ( r1_tarski(C,k8_relset_2(B,A,D,k6_relset_1(A,B,E)))
<=> r1_tarski(D,k8_relset_2(A,B,C,E)) ) ) ) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------