TPTP Problem File: SEU448+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU448+1 : TPTP v8.2.0. Released v3.4.0.
% Domain   : Set Theory
% Problem  : First and Second Order Cutting of Binary Relations T62
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Ret05] Retel (2005), Properties of First and Second Order Cut
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t62_relset_2 [Urb08]

% Status   : Theorem
% Rating   : 0.67 v8.2.0, 0.72 v8.1.0, 0.61 v7.5.0, 0.69 v7.4.0, 0.60 v7.3.0, 0.59 v7.1.0, 0.57 v6.4.0, 0.62 v6.3.0, 0.67 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.65 v5.5.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.81 v5.2.0, 0.80 v5.1.0, 0.81 v5.0.0, 0.83 v4.1.0, 0.87 v4.0.1, 0.91 v4.0.0, 0.92 v3.7.0, 0.95 v3.4.0
% Syntax   : Number of formulae    :   48 (  12 unt;   0 def)
%            Number of atoms       :  102 (   7 equ)
%            Maximal formula atoms :    5 (   2 avg)
%            Number of connectives :   66 (  12   ~;   1   |;  16   &)
%                                         (   6 <=>;  31  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   11 (   9 usr;   1 prp; 0-3 aty)
%            Number of functors    :    8 (   8 usr;   1 con; 0-4 aty)
%            Number of variables   :   93 (  85   !;   8   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Normal version: includes the axioms (which may be theorems from
%            other articles) and background that are possibly necessary.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t62_relset_2,conjecture,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(A))
     => ! [D] :
          ( m1_subset_1(D,k1_zfmisc_1(B))
         => ! [E] :
              ( m2_relset_1(E,A,B)
             => ( r1_tarski(k10_relset_1(A,B,E,k3_subset_1(A,C)),k3_subset_1(B,D))
              <=> r1_tarski(k10_relset_1(B,A,k6_relset_1(A,B,E),D),C) ) ) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => ~ r2_hidden(B,A) ) ).

fof(cc1_relat_1,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => v1_relat_1(A) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
     => v1_relat_1(C) ) ).

fof(dt_k10_relset_1,axiom,
    ! [A,B,C,D] :
      ( m1_relset_1(C,A,B)
     => m1_subset_1(k10_relset_1(A,B,C,D),k1_zfmisc_1(B)) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_subset_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
     => m1_subset_1(k3_subset_1(A,B),k1_zfmisc_1(A)) ) ).

fof(dt_k4_relat_1,axiom,
    ! [A] :
      ( v1_relat_1(A)
     => v1_relat_1(k4_relat_1(A)) ) ).

fof(dt_k6_relset_1,axiom,
    ! [A,B,C] :
      ( m1_relset_1(C,A,B)
     => m2_relset_1(k6_relset_1(A,B,C),B,A) ) ).

fof(dt_k9_relat_1,axiom,
    $true ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
     => m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : m1_relset_1(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : m1_subset_1(B,A) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : m2_relset_1(C,A,B) ).

fof(fc11_relat_1,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => ( v1_xboole_0(k4_relat_1(A))
        & v1_relat_1(k4_relat_1(A)) ) ) ).

fof(fc12_relat_1,axiom,
    ( v1_xboole_0(k1_xboole_0)
    & v1_relat_1(k1_xboole_0)
    & v3_relat_1(k1_xboole_0) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).

fof(fc1_sysrel,axiom,
    ! [A,B] : v1_relat_1(k2_zfmisc_1(A,B)) ).

fof(fc4_relat_1,axiom,
    ( v1_xboole_0(k1_xboole_0)
    & v1_relat_1(k1_xboole_0) ) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(A)
        & ~ v1_xboole_0(B) )
     => ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).

fof(involutiveness_k3_subset_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
     => k3_subset_1(A,k3_subset_1(A,B)) = B ) ).

fof(involutiveness_k4_relat_1,axiom,
    ! [A] :
      ( v1_relat_1(A)
     => k4_relat_1(k4_relat_1(A)) = A ) ).

fof(involutiveness_k6_relset_1,axiom,
    ! [A,B,C] :
      ( m1_relset_1(C,A,B)
     => k6_relset_1(A,B,k6_relset_1(A,B,C)) = C ) ).

fof(rc1_relat_1,axiom,
    ? [A] :
      ( v1_xboole_0(A)
      & v1_relat_1(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc2_relat_1,axiom,
    ? [A] :
      ( ~ v1_xboole_0(A)
      & v1_relat_1(A) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
      & v1_xboole_0(B) ) ).

fof(rc3_relat_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v3_relat_1(A) ) ).

fof(redefinition_k10_relset_1,axiom,
    ! [A,B,C,D] :
      ( m1_relset_1(C,A,B)
     => k10_relset_1(A,B,C,D) = k9_relat_1(C,D) ) ).

fof(redefinition_k6_relset_1,axiom,
    ! [A,B,C] :
      ( m1_relset_1(C,A,B)
     => k6_relset_1(A,B,C) = k4_relat_1(C) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
    <=> m1_relset_1(C,A,B) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : r1_tarski(A,A) ).

fof(symmetry_r1_xboole_0,axiom,
    ! [A,B] :
      ( r1_xboole_0(A,B)
     => r1_xboole_0(B,A) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => m1_subset_1(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,B)
     => ( v1_xboole_0(B)
        | r2_hidden(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,k1_zfmisc_1(B))
    <=> r1_tarski(A,B) ) ).

fof(t43_subset_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
     => ! [C] :
          ( m1_subset_1(C,k1_zfmisc_1(A))
         => ( r1_xboole_0(B,C)
          <=> r1_tarski(B,k3_subset_1(A,C)) ) ) ) ).

fof(t44_subset_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
     => ! [C] :
          ( m1_subset_1(C,k1_zfmisc_1(A))
         => ( r1_xboole_0(B,k3_subset_1(A,C))
          <=> r1_tarski(B,C) ) ) ) ).

fof(t46_relset_2,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(A))
     => ! [D] :
          ( m1_subset_1(D,k1_zfmisc_1(B))
         => ! [E] :
              ( m1_subset_1(E,k1_zfmisc_1(k2_zfmisc_1(A,B)))
             => ( r1_xboole_0(C,k9_relat_1(k4_relat_1(E),D))
              <=> r1_xboole_0(D,k9_relat_1(E,C)) ) ) ) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C)) )
     => m1_subset_1(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C))
        & v1_xboole_0(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

%------------------------------------------------------------------------------